IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1049-d1596704.html
   My bibliography  Save this article

Low-Carbon Development Strategies for Power Generation Expansion in Sub-Saharan Africa: Insights from an Optimisation-Based Analysis for Kenya

Author

Listed:
  • Xavier S. Musonye

    (School of Technology, Department of Engineering, Reykjavik University, 102 Reykjavik, Iceland
    GRÓ-Geothermal Training Program, 203 Kópavogur, Iceland
    Kenya Electricity Generating Company, Pension Plaza-Ngara, Nairobi P.O. Box 47936, Kenya)

  • Brynhildur Davíðsdóttir

    (Environment and Natural Resources, School of Engineering and Natural Sciences, University of Iceland, 102 Reykjavik, Iceland)

  • Ragnar Kristjánsson

    (School of Technology, Department of Engineering, Reykjavik University, 102 Reykjavik, Iceland)

  • Eyjólfur I. Ásgeirsson

    (School of Technology, Department of Engineering, Reykjavik University, 102 Reykjavik, Iceland)

  • Hlynur Stefánsson

    (School of Technology, Department of Engineering, Reykjavik University, 102 Reykjavik, Iceland)

Abstract

Energy production and consumption are major contributors to global anthropogenic greenhouse gas emissions. Sub-Saharan African countries face the challenge of harnessing diverse energy sources to meet rising demand affordably while curbing emissions. This study uses the optimisation-based Kenya-TIMES model to explore low-carbon strategies for Kenya’s power generation from 2020 to 2050. A business-as-usual (BAU) scenario is compared with four low-carbon scenarios: carbon tax, renewable portfolio standard, renewable energy subsidies, and a hybrid of subsidies and carbon tax. The analysis reveals that geothermal, wind, and hydropower dominate the energy mix until 2035 across all scenarios. After 2035, coal capacity in the BAU scenario is replaced by solar, gas, and biomass in low-carbon scenarios. While all low-carbon strategies, except the renewable energy subsidy scenario, meet Kenya’s nationally determined contribution (NDC) emission reduction targets by 2050, the hybrid scenario emerges as the most effective and cost-efficient pathway. Although achieving significant emissions reductions, the carbon tax and renewable portfolio standard scenarios result in higher system costs. The results indicate that an integrated optimisation-based approach can identify optimal energy development pathways that leverage local resources to accommodate growth and enhance energy access while minimising costs and emissions.

Suggested Citation

  • Xavier S. Musonye & Brynhildur Davíðsdóttir & Ragnar Kristjánsson & Eyjólfur I. Ásgeirsson & Hlynur Stefánsson, 2025. "Low-Carbon Development Strategies for Power Generation Expansion in Sub-Saharan Africa: Insights from an Optimisation-Based Analysis for Kenya," Energies, MDPI, vol. 18(5), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1049-:d:1596704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wambui, Valentine & Njoka, Francis & Muguthu, Joseph & Ndwali, Patrick, 2022. "Scenario analysis of electricity pathways in Kenya using Low Emissions Analysis Platform and the Next Energy Modeling system for optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Blimpo, Moussa P. & Dato, Prudence & Mukhaya, Brian & Odarno, Lily, 2024. "Climate change and economic development in Africa: A systematic review of energy transition modeling research," Energy Policy, Elsevier, vol. 187(C).
    3. Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron, 2019. "Are complex energy system models more accurate? An intra-model comparison of power system optimization models," Applied Energy, Elsevier, vol. 255(C).
    4. Blazquez, Jorge & Nezamuddin, Nora & Zamrik, Tamim, 2018. "Economic policy instruments and market uncertainty: Exploring the impact on renewables adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 224-233.
    5. Jörg Ankel-Peters & Gunther Bensch & Ashwini Dabadge & Anicet Munyehirwe & Julian Rose & Maximiliane Sievert & Emmanuel Nshakira-Rukundo & Jann Lay, 2025. "Tax carbon cautiously for sub-Saharan Africa," Nature Climate Change, Nature, vol. 15(1), pages 7-9, January.
    6. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    7. Neve Fields & David Ryves & Rudolf Yeganyan & Carla Cannone & Naomi Tan & Mark Howells, 2023. "Evidence-Based Policymaking: Insights and Recommendations for the Implementation of Clean Energy Transition Pathways for Kenya’s Power Sector," Energies, MDPI, vol. 16(23), pages 1-20, December.
    8. S. Pye & O. Broad & C. Bataille & P. Brockway & H. E. Daly & R. Freeman & A. Gambhir & O. Geden & F. Rogan & S. Sanghvi & J. Tomei & I. Vorushylo & J. Watson, 2021. "Modelling net-zero emissions energy systems requires a change in approach," Climate Policy, Taylor & Francis Journals, vol. 21(2), pages 222-231, February.
    9. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    10. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    11. Dalla Longa, Francesco & van der Zwaan, Bob, 2017. "Do Kenya’s climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?," Renewable Energy, Elsevier, vol. 113(C), pages 1559-1568.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Serhan Cevik, 2024. "Climate change and energy security: the dilemma or opportunity of the century?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 26(3), pages 653-672, July.
    3. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    5. Mujammil Asdhiyoga Rahmanta & Rahmat Adiprasetya Al Hasibi & Handrea Bernando Tambunan & Ruly & Agussalim Syamsuddin & Indra Ardhanayudha Aditya & Benny Susanto, 2024. "Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant," Energies, MDPI, vol. 17(8), pages 1-22, April.
    6. Carvalho, Ricardo L. & Lindgren, Robert & García-López, Natxo & Nyambane, Anne & Nyberg, Gert & Diaz-Chavez, Rocio & Boman, Christoffer, 2019. "Household air pollution mitigation with integrated biomass/cookstove strategies in Western Kenya," Energy Policy, Elsevier, vol. 131(C), pages 168-186.
    7. Carlsson, Fredrik & Demeke, Eyoual & Martinsson, Peter & Tesemma, Tewodros, 2020. "Cost of power outages for manufacturing firms in Ethiopia: A stated preference study," Energy Economics, Elsevier, vol. 88(C).
    8. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    9. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    10. Adhitya Nugraha & Hermanto Siregar & Idqan Fahmi & Zenal Asikin & Dikky Indrawan & Harianto Harianto & Salis Aprilian, 2024. "Identification of Factors Affecting Net Zero Emission Level in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 203-210, September.
    11. Andreassen, Gøril L. & Kallbekken, Steffen & Rosendahl, Knut Einar, 2024. "Can policy packaging help overcome Pigouvian tax aversion? A lab experiment on combining taxes and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).
    12. Zhang, Jiekuan, 2023. "Emissions trading scheme and energy consumption and output structure: Evidence from China," Renewable Energy, Elsevier, vol. 219(P1).
    13. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    14. Wu, Qingyang & Wang, Yaqi & Shen, Guangjun, 2024. "The green bonus of tax incentives: Evidence from China," Journal of Economic Behavior & Organization, Elsevier, vol. 227(C).
    15. Duojiao Tan & Bilal & Simon Gao & Bushra Komal, 2020. "Impact of Carbon Emission Trading System Participation and Level of Internal Control on Quality of Carbon Emission Disclosures: Insights from Chinese State-Owned Electricity Companies," Sustainability, MDPI, vol. 12(5), pages 1-14, February.
    16. Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
    17. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    18. Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effects of electricity demand reductions under a carbon pricing regime on emissions: lessons from COVID-19," Energy Policy, Elsevier, vol. 156(C).
    19. Barnea, Gil & Hagemann, Christian & Wurster, Stefan, 2022. "Policy instruments matter: Support schemes for renewable energy capacity in worldwide comparison," Energy Policy, Elsevier, vol. 168(C).
    20. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1049-:d:1596704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.