IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p1008-d1594956.html
   My bibliography  Save this article

Production Efficiency of Advanced Liquid Biofuels: Prospects and Challenges

Author

Listed:
  • Tamás Mizik

    (Institute of Sustainable Development, Corvinus University of Budapest, 1093 Budapest, Hungary)

  • Christian Barika Igbeghe

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

  • Zsuzsanna Deák

    (Department of Business Sciences and Digital Skills, Keleti Károly Faculty of Business and Management, Óbuda University, 1086 Budapest, Hungary)

Abstract

Renewable sources are becoming more critical in light of global warming and the recent energy crisis. As a renewable energy source, biofuels may play an essential role in this process, especially in the transport sector. Advanced biofuels provide a great opportunity, as their potential feedstocks do not compete with food production. Based on a systematic literature review, this study aims to provide a comprehensive overview of the prospects and challenges of advanced liquid biofuels. Out of the identified 508 articles, 188 were abstract-screened, providing 67 articles for in-depth screening. Finally, 57 articles were reviewed. Although advanced biofuels are not yet economically viable, it is evident that every step of the production process can be optimized. Moreover, technological advancements, such as the use of novel catalysts and co-catalysts, nanotechnology, and genetic and metabolic engineering, offer great opportunities for enhanced production efficiency, which is key for their production to be profitable.

Suggested Citation

  • Tamás Mizik & Christian Barika Igbeghe & Zsuzsanna Deák, 2025. "Production Efficiency of Advanced Liquid Biofuels: Prospects and Challenges," Energies, MDPI, vol. 18(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:1008-:d:1594956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/1008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/1008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Shanmugam, Sabarathinam & Ngo, Huu-Hao & Wu, Yi-Rui, 2020. "Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review," Renewable Energy, Elsevier, vol. 149(C), pages 1107-1119.
    3. Zaman Sajid & Maria Aparecida Batista da Silva & Syed Nasir Danial, 2021. "Historical Analysis of the Role of Governance Systems in the Sustainable Development of Biofuels in Brazil and the United States of America (USA)," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    4. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    5. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    6. Sabarathinam Shanmugam & Anjana Hari & Arivalagan Pugazhendhi & Timo Kikas, 2023. "Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production," Energies, MDPI, vol. 16(13), pages 1-24, June.
    7. Elgharbawy, Abdallah S. & Ali, Rehab M., 2022. "Techno-economic assessment of the biodiesel production using natural minerals rocks as a heterogeneous catalyst via conventional and ultrasonic techniques," Renewable Energy, Elsevier, vol. 191(C), pages 161-175.
    8. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Umer Farooq & Muhammad Ahmad Jamil & Zareena Kausar & Noor Us Sabah & Muhammad Faizan Shah & Hafiz Zia Ur Rehman & Atiq Ur Rehman, 2021. "Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review," Energies, MDPI, vol. 14(9), pages 1-20, April.
    9. Jinmeng Chen & Xiaotian Ma & Mengying Liang & Zhiwei Guo & Yafan Cai & Chenjie Zhu & Zhi Wang & Shilei Wang & Jingliang Xu & Hanjie Ying, 2024. "Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review," Waste, MDPI, vol. 2(4), pages 1-23, November.
    10. Lovisa Panduleni Johannes & Tran Dang Xuan, 2024. "Comparative Analysis of Acidic and Alkaline Pretreatment Techniques for Bioethanol Production from Perennial Grasses," Energies, MDPI, vol. 17(5), pages 1-33, February.
    11. Larnaudie, Valeria & Ferrari, Mario Daniel & Lareo, Claudia, 2022. "Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics and environmental sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksey I. Shinkevich & Alsu R. Akhmetshina & Ruslan R. Khalilov, 2022. "Development of a Methodology for Forecasting the Sustainable Development of Industry in Russia Based on the Tools of Factor and Discriminant Analysis," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    2. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    3. Khanh-Van Ho & Novianus Efrat & Kathy L. Schreiber & Phuc H. Vo & Marco N. De Canha & Analike Blom van Staden & Bianca D. Payne & Carel B. Oosthuizen & Danielle Twilley & Zhentian Lei & Lloyd W. Sumne, 2022. "Assessing Anti-Inflammatory Activities and Compounds in Switchgrass ( Panicum virgatum )," Agriculture, MDPI, vol. 12(7), pages 1-14, June.
    4. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    5. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    6. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    7. Wang, Guotao & Liao, Qi & Wang, Chang & Liang, Yongtu & Zhang, Haoran, 2022. "Multiperiod optimal planning of biofuel refueling stations: A bi-level game-theoretic approach," Renewable Energy, Elsevier, vol. 200(C), pages 1152-1165.
    8. Hu, Jiang & Abed, Azher M. & Talib, Zunirah Mohd & Alghassab, Mohammed A. & Abdullaev, Sherzod & Ghandour, Raymond & Hamlaoui, Oumayma & Alhomayani, Fahad M. & Dutta, Ashit Kumar & Jastaneyah, Zuhair, 2025. "Technical, economic, and environmental study with ANN-based optimization of a biomass-powered versatile/sustainable polygeneration system with carbon capture/utilization approach," Energy, Elsevier, vol. 315(C).
    9. Xie, Wenlei & Wang, Xiangxiang & Guo, Lihong, 2024. "Utilization of Keplerate-type polyoxomolybdates {Mo132} supported on hierarchical porous SOM-ZIF-8 as reusable catalyst boosts biodiesel production from acidic soybean oils by simultaneous transesteri," Renewable Energy, Elsevier, vol. 225(C).
    10. Bell, Aron & Mannion, Liam Anthony & Kelly, Mark & Ghaani, Mohammad Reza & Dooley, Stephen, 2025. "Life cycle CO2e intensity of commercial aviation with specific sustainable aviation fuels," Applied Energy, Elsevier, vol. 382(C).
    11. Mamata Singhvi & Smita Zinjarde & Beom-Soo Kim, 2022. "Sustainable Strategies for the Conversion of Lignocellulosic Materials into Biohydrogen: Challenges and Solutions toward Carbon Neutrality," Energies, MDPI, vol. 15(23), pages 1-13, November.
    12. Tariq Mahmood & Shahid Hassan & Abdullah Sheikh & Abdul Raheem & Ahad Hameed, 2022. "Experimental Investigations of Diesel Engine Performance Using Blends of Distilled Waste Cooking Oil Biodiesel with Diesel and Economic Feasibility of the Distilled Biodiesel," Energies, MDPI, vol. 15(24), pages 1-19, December.
    13. Han, Xiaoxiang & Jiang, Shengchou & Chen, Ziyi & Zeng, Zhiwei & Chen, Qing & Niu, Fuge & Pan, Weichun & Tang, Xiujuan & Liu, Shang-Bin, 2023. "Highly active sulfonic ionic liquid modified heteropoly acid composite catalysts for efficient production of ethyl palmitate," Renewable Energy, Elsevier, vol. 215(C).
    14. Li, Sibiao & Zhang, Xiaohang & Ma, Pengbo & Li, Wenxi & Zhang, Xuechao & Wang, Ruyi & Hui, Yunting & You, Yong & Wang, Decheng, 2025. "A review of research progress in the compaction of major crop waste by mechanical equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    15. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Najaf Ali Wani & Umakanta Mishra, 2024. "A sustainable municipal solid waste supply chain management with biodiesel energy production using microwave technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12863-12900, May.
    17. Robyn Jadischke & William David Lubitz, 2025. "Current State of Greenhouse Waste Biomass Disposal Methods, with a Focus on Essex County Ontario," Sustainability, MDPI, vol. 17(4), pages 1-27, February.
    18. Jeyaseelan, Thangaraja & El Samad, Tala & Rajkumar, Sundararajan & Chatterjee, Abhay & Al-Zaili, Jafar, 2023. "A techno-economic assessment of waste oil biodiesel blends for automotive applications in urban areas: Case of India," Energy, Elsevier, vol. 271(C).
    19. Mennani, Mehdi & Kasbaji, Meriem & Ait Benhamou, Anass & Boussetta, Abdelghani & Kassab, Zineb & El Achaby, Mounir & Grimi, Nabil & Moubarik, Amine, 2024. "The potential of lignin-functionalized metal catalysts - A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Ebrahimi, Sajad & Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph, 2022. "Renewable jet fuel supply chain network design: Application of direct monetary incentives," Applied Energy, Elsevier, vol. 310(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:1008-:d:1594956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.