IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1739-d1063422.html
   My bibliography  Save this article

Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective

Author

Listed:
  • Gurunathan Manikandan

    (Department of Mechanical Engineering, Velammal College of Engineering and Technology, Madurai 625009, India)

  • P. Rajesh Kanna

    (CO2 Research and Green Technologies Centre, VIT, Vellore 632014, India)

  • Dawid Taler

    (Faculty of Environmental Engineering and Energy, Cracow University of Technology, 31-155 Cracow, Poland)

  • Tomasz Sobota

    (Faculty of Environmental Engineering and Energy, Cracow University of Technology, 31-155 Cracow, Poland)

Abstract

A detailed review was conducted to explore waste cooking oil (WCO) as feedstock for biodiesel. The manuscript highlights the impact on health while using used cooking oil and the scope for revenue generation from WCO. Up to a 20% blend with diesel results in less pollutants, and it does not demand more modifications to the engine. Also, this reduces the country’s import bill. Furthermore, it suggests the scope for alternate sustainable income among rural farmers through a circular economy. Various collection strategies are discussed, a SWOC (strength, weakness, opportunity, and challenges) analysis is presented to aid in understanding different countries’ policies regarding the collection of WCO, and a more suitable method for conversion is pronounced. A techno-economic analysis is presented to explore the viability of producing 1 litre of biodiesel. The cost of 1 litre of WCO-based biodiesel is compared with costs Iran and Pakistan, and it is noticed that the difference among them is less than 1%. Life cycle assessment (LCA) is mandatory to reveal the impact of WCO biodiesel on socio-economic and environmental concerns. Including exergy analysis will provide comprehensive information about the production and justification of WCO as a biodiesel.

Suggested Citation

  • Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1739-:d:1063422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muruganantham Ponnusamy & Bharathwaaj Ramani & Ravishankar Sathyamruthy, 2021. "A Parametric Study on a Diesel Engine Fuelled Using Waste Cooking Oil Blended with Al 2 O 3 Nanoparticle—Performance, Emission, and Combustion Characteristics," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    2. Khoshnevisan, Benyamin & Tabatabaei, Meisam & Tsapekos, Panagiotis & Rafiee, Shahin & Aghbashlo, Mortaza & Lindeneg, Susanne & Angelidaki, Irini, 2020. "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Andreo-Martínez, Pedro & Ortiz-Martínez, Víctor Manuel & García-Martínez, Nuria & de los Ríos, Antonia Pérez & Hernández-Fernández, Francisco José & Quesada-Medina, Joaquín, 2020. "Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis," Applied Energy, Elsevier, vol. 264(C).
    5. Naderloo, Leila & Javadikia, Hossein & Mostafaei, Mostafa, 2017. "Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 56-64.
    6. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    7. H M, Channabasavaiah & G, Prof.Venkata Naidu, 2021. "Income and Employment Generation through Mining Industry in India," MPRA Paper 111661, University Library of Munich, Germany.
    8. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    9. Zhang, Huiming & Li, Lianshui & Zhou, Peng & Hou, Jianmin & Qiu, Yueming, 2014. "Subsidy modes, waste cooking oil and biofuel: Policy effectiveness and sustainable supply chains in China," Energy Policy, Elsevier, vol. 65(C), pages 270-274.
    10. Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion," Energy, Elsevier, vol. 35(4), pages 1839-1847.
    11. Ortner, Maria E. & Müller, Wolfgang & Schneider, Irene & Bockreis, Anke, 2016. "Environmental assessment of three different utilization paths of waste cooking oil from households," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 59-67.
    12. Aghbashlo, Mortaza & Tabatabaei, Meisam & Soltanian, Salman & Ghanavati, Hossein, 2019. "Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis," Renewable Energy, Elsevier, vol. 143(C), pages 64-76.
    13. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Janssen, Rainer & Rutz, Dominik Damian, 2011. "Sustainability of biofuels in Latin America: Risks and opportunities," Energy Policy, Elsevier, vol. 39(10), pages 5717-5725, October.
    15. Bimpizas-Pinis, Meletios & Calzolari, Tommaso & Genovese, Andrea, 2022. "Exploring the transition towards circular supply chains through the arcs of integration," International Journal of Production Economics, Elsevier, vol. 250(C).
    16. Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.
    17. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    18. Demirbas, Ayhan, 2007. "Importance of biodiesel as transportation fuel," Energy Policy, Elsevier, vol. 35(9), pages 4661-4670, September.
    19. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    20. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Umer Farooq & Muhammad Ahmad Jamil & Zareena Kausar & Noor Us Sabah & Muhammad Faizan Shah & Hafiz Zia Ur Rehman & Atiq Ur Rehman, 2021. "Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review," Energies, MDPI, vol. 14(9), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Fallahi, Alireza & Farzad, Somayeh & Mohtasebi, Seyed Saeid & Mandegari, Mohsen & Görgens, Johann F. & Gupta, Vijai Kumar & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2021. "Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    5. John, Monnie & Abdullah, Mohammad Omar & Hua, Tan Yie & Nolasco-Hipólito, Cirilo, 2021. "Techno-economical and energy analysis of sunflower oil biodiesel synthesis assisted with waste ginger leaves derived catalysts," Renewable Energy, Elsevier, vol. 168(C), pages 815-828.
    6. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    7. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Varjani, Sunita & Wang, Yajing & Peng, Wanxi & Pan, Junting & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "Marine shell-based biorefinery: A sustainable solution for aquaculture waste valorization," Renewable Energy, Elsevier, vol. 206(C), pages 623-634.
    8. Anzhelika M. Eremeeva & Natalia K. Kondrasheva & Artyom F. Khasanov & Ivan L. Oleynik, 2023. "Environmentally Friendly Diesel Fuel Obtained from Vegetable Raw Materials and Hydrocarbon Crude," Energies, MDPI, vol. 16(5), pages 1-12, February.
    9. Diego Alexis Ramos Huarachi & Cleiton Hluszko & Micaela Ines Castillo Ulloa & Vinicius Moretti & Julio Abraham Ramos Quispe & Fabio Neves Puglieri & Antonio Carlos de Francisco, 2023. "Life Cycle Thinking for a Circular Bioeconomy: Current Development, Challenges, and Future Perspectives," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    10. Zhang, Yong & Bao, Xiangtai & Ren, Gang & Cai, Xiaohua & Li, Jian, 2012. "Analysing the status, obstacles and recommendations for WCOs of restaurants as biodiesel feedstocks in China from supply chain’ perspectives," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 20-37.
    11. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Teuku Meurah Indra Riayatsyah & Hwai Chyuan Ong & Wen Tong Chong & Lisa Aditya & Heri Hermansyah & Teuku Meurah Indra Mahlia, 2017. "Life Cycle Cost and Sensitivity Analysis of Reutealis trisperma as Non-Edible Feedstock for Future Biodiesel Production," Energies, MDPI, vol. 10(7), pages 1-21, June.
    13. Nguyen Tuan Nghia & Nguyen Xuan Khoa & Wonjun Cho & Ocktaeck Lim, 2021. "A Study the Effect of Biodiesel Blends and the Injection Timing on Performance and Emissions of Common Rail Diesel Engines," Energies, MDPI, vol. 15(1), pages 1-15, December.
    14. Tsapekos, Panagiotis & Khoshnevisan, Benyamin & Alvarado-Morales, Merlin & Zhu, Xinyu & Pan, Junting & Tian, Hailin & Angelidaki, Irini, 2021. "Upcycling the anaerobic digestion streams in a bioeconomy approach: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    16. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    17. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    18. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    19. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    20. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1739-:d:1063422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.