IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3294-d1685852.html
   My bibliography  Save this article

A Systematic Review of Mechanical Pretreatment Techniques of Wood Biomass for Bioenergy

Author

Listed:
  • Giorgia Di Domenico

    (Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy)

  • Elisa Cioccolo

    (Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy)

  • Leonardo Bianchini

    (Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy)

  • Rachele Venanzi

    (Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy)

  • Andrea Colantoni

    (Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy)

  • Rodolfo Picchio

    (Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy)

  • Luca Cozzolino

    (Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics (CREA), 00015 Rome, Italy)

  • Valerio Di Stefano

    (Research Centre for Forestry and Wood, Council for Agricultural Research and Economics (CREA), 00166 Rome, Italy)

Abstract

Lignocellulosic biomass is an exciting renewable resource for producing sustainable biofuels, thanks to its abundance and low environmental impact. However, its intricate structure makes it tough for enzymes to break it down effectively. Only efficient pretreatment methods can solve these problems. Among these, mechanical pretreatment methods are particularly good for industry because they are easy to use, do not require chemicals, and make it easier to achieve biomass. This systematic review adhered to the PRISMA protocols and used text analysis with VOSviewer to examine 33 academic articles published between 2005 and 2025. It highlighted two main types of mechanical pretreatment: size reduction (which includes grinding, crushing, and shredding) and densification (like pelletizing and briquetting). The results show that mechanical pretreatment can significantly boost biofuel yields by increasing surface area, lowering crystallinity, and allowing better enzyme penetration. Energy consumption remains a major hurdle for the overall sustainability of biomass conversion processes. This research provides a comprehensive review of current mechanical techniques, detailing their operational settings and performance metrics while also offering suggestions for optimizing biomass conversion processes. By promoting the use of mechanical pretreatment in biofuel production systems, the findings align with the principles of a circular economy and contribute to the development of greener energy sources.

Suggested Citation

  • Giorgia Di Domenico & Elisa Cioccolo & Leonardo Bianchini & Rachele Venanzi & Andrea Colantoni & Rodolfo Picchio & Luca Cozzolino & Valerio Di Stefano, 2025. "A Systematic Review of Mechanical Pretreatment Techniques of Wood Biomass for Bioenergy," Energies, MDPI, vol. 18(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3294-:d:1685852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3294/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3294/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ankita Juneja & Deepak Kumar & Vijay Kumar Singh & Yadvika & Vijay Singh, 2020. "Chemical Free Two-Step Hydrothermal Pretreatment to Improve Sugar Yields from Energy Cane," Energies, MDPI, vol. 13(21), pages 1-12, November.
    2. Ortega, Julieth Orduña & Mora Vargas, Jorge Andrés & Metzker, Gustavo & Gomes, Eleni & da Silva, Roberto & Boscolo, Mauricio, 2021. "Enhancing the production of the fermentable sugars from sugarcane straw: A new approach to applying alkaline and ozonolysis pretreatments," Renewable Energy, Elsevier, vol. 164(C), pages 502-508.
    3. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    4. Amílcar Díaz-González & Magdalena Yeraldi Perez Luna & Erik Ramírez Morales & Sergio Saldaña-Trinidad & Lizeth Rojas Blanco & Sergio de la Cruz-Arreola & Bianca Yadira Pérez-Sariñana & José Billerman , 2022. "Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod," Energies, MDPI, vol. 15(10), pages 1-17, May.
    5. Leonardo Bianchini & Paolo Costa & Pier Paolo Dell’Omo & Andrea Colantoni & Massimo Cecchini & Danilo Monarca, 2021. "An Industrial Scale, Mechanical Process for Improving Pellet Quality and Biogas Production from Hazelnut and Olive Pruning," Energies, MDPI, vol. 14(6), pages 1-13, March.
    6. Jinmeng Chen & Xiaotian Ma & Mengying Liang & Zhiwei Guo & Yafan Cai & Chenjie Zhu & Zhi Wang & Shilei Wang & Jingliang Xu & Hanjie Ying, 2024. "Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review," Waste, MDPI, vol. 2(4), pages 1-23, November.
    7. Yang Mo Gu & Sunghyun Kim & Daekyung Sung & Byoung-In Sang & Jin Hyung Lee, 2019. "Feasibility of Continuous Pretreatment of Corn Stover: A Comparison of Three Commercially Available Continuous Pulverizing Devices," Energies, MDPI, vol. 12(8), pages 1-8, April.
    8. Mirmohamadsadeghi, Safoora & Karimi, Keikhosro & Azarbaijani, Reza & Parsa Yeganeh, Laleh & Angelidaki, Irini & Nizami, Abdul-Sattar & Bhat, Rajeev & Dashora, Kavya & Vijay, Virendra Kumar & Aghbashlo, 2021. "Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Yarima Torreiro & Leticia Pérez & Gonzalo Piñeiro & Francisco Pedras & Angela Rodríguez-Abalde, 2020. "The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy," Energies, MDPI, vol. 13(10), pages 1-13, May.
    10. Leonardo Bianchini & Riccardo Alemanno & Valerio Di Stefano & Massimo Cecchini & Andrea Colantoni, 2022. "Soil Compaction in Harvesting Operations of Phalaris arundinacea L," Land, MDPI, vol. 11(7), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margarida Casau & Marta Ferreira Dias & João C. O. Matias & Leonel J. R. Nunes, 2022. "Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach," Resources, MDPI, vol. 11(4), pages 1-16, March.
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    6. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    8. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    10. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Ge, Shengbo & Foong, Shin Ying & Ma, Nyuk Ling & Liew, Rock Keey & Wan Mahari, Wan Adibah & Xia, Changlei & Yek, Peter Nai Yuh & Peng, Wanxi & Nam, Wai Lun & Lim, Xin Yi & Liew, Chin Mei & Chong, Chi , 2020. "Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Magdalena Zdeb & Marta Bis & Artur Przywara, 2023. "Multi-Criteria Analysis of the Influence of Lignocellulosic Biomass Pretreatment Techniques on Methane Production," Energies, MDPI, vol. 16(1), pages 1-14, January.
    15. Piyarath Saosee & Boonrod Sajjakulnukit & Shabbir H. Gheewala, 2020. "Feedstock Security Analysis for Wood Pellet Production in Thailand," Energies, MDPI, vol. 13(19), pages 1-14, October.
    16. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    17. Andrés Niño & Nelson Arzola & Oscar Araque, 2020. "Experimental Study on the Mechanical Properties of Biomass Briquettes from a Mixture of Rice Husk and Pine Sawdust," Energies, MDPI, vol. 13(5), pages 1-19, February.
    18. Kamila E. Klimek & Saban Kordali & Anna Borkowska & Ferah Yilmaz & Grzegorz Maj, 2025. "Energy Assessment of Hazelnut Shells ( Corylus avellana L.) of Selected Turkish Varieties," Energies, MDPI, vol. 18(14), pages 1-13, July.
    19. Leonel J. R. Nunes, 2020. "Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms," Clean Technol., MDPI, vol. 2(3), pages 1-20, July.
    20. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3294-:d:1685852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.