Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Park, Jonghyun & Yim, Jun Ho & Cho, Seong-Heon & Jung, Sungyup & Tsang, Yiu Fai & Chen, Wei-Hsin & Jeon, Young Jae & Kwon, Eilhann E., 2024. "A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass," Applied Energy, Elsevier, vol. 362(C).
- Yang, Luyao & Li, Xiujin & Yuan, Hairong & Yan, Beibei & Yang, Gaixiu & Lu, Yao & Li, Juan & Zuo, Xiaoyu, 2023. "Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment," Energy, Elsevier, vol. 268(C).
- Yu, Jianming & Chen, Sitong & Yu, Yang & Zhang, Chengcheng & Jin, Mingjie, 2024. "Influence of feedstock selection on cellulosic ethanol production based on densified biomass with calcium hydroxide and regular steam pretreatment," Renewable Energy, Elsevier, vol. 227(C).
- Rahmani, Ali Mohammad & Tyagi, Vinay Kumar & Kazmi, A.A. & Ojha, Chandra Shekhar P., 2023. "Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling," Energy, Elsevier, vol. 283(C).
- Jafari, Yadollah & Amiri, Hamid & Karimi, Keikhosro, 2016. "Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse," Applied Energy, Elsevier, vol. 168(C), pages 216-225.
- Li, Wen-Chao & Zhang, Sen-Jia & Xu, Tao & Sun, Mei-Qing & Zhu, Jia-Qing & Zhong, Cheng & Li, Bing-Zhi & Yuan, Ying-Jin, 2020. "Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin," Energy, Elsevier, vol. 195(C).
- Urszula Dziekońska-Kubczak & Joanna Berłowska & Piotr Dziugan & Piotr Patelski & Maria Balcerek & Katarzyna Pielech-Przybylska & Katarzyna Robak, 2019. "Two-Stage Pretreatment to Improve Saccharification of Oat Straw and Jerusalem Artichoke Biomass," Energies, MDPI, vol. 12(9), pages 1-13, May.
- Chen, Xiangxue & Liu, Shuangmei & Zhai, Rui & Yuan, Xinchuan & Yu, Yang & Shen, Guannan & Wang, Zhao & Yu, Jianming & Jin, Mingjie, 2022. "Lime pretreatment of pelleted corn stover boosts ethanol titers and yields without water washing or detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 192(C), pages 396-404.
- Wang, Xin & Fan, Ruichen & Yang, Qiang & Tao, Yehan & Lu, Jie & Du, Jian & Hu, Jinwen & Wang, Haisong, 2024. "Optimal tartaric acid pretreatment of reed for bioethanol production by fed batch semi-synchronous saccharification fermentation," Renewable Energy, Elsevier, vol. 227(C).
- Areepak, Chitchanok & Jiradechakorn, Thitirat & Chuetor, Santi & Phalakornkule, Chantaraporn & Sriariyanun, Malinee & Raita, Marisa & Champreda, Verawat & Laosiripojana, Navadol, 2022. "Improvement of lignocellulosic pretreatment efficiency by combined chemo - Mechanical pretreatment for energy consumption reduction and biofuel production," Renewable Energy, Elsevier, vol. 182(C), pages 1094-1102.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tamás Mizik & Christian Barika Igbeghe & Zsuzsanna Deák, 2025. "Production Efficiency of Advanced Liquid Biofuels: Prospects and Challenges," Energies, MDPI, vol. 18(4), pages 1-18, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huong, Vu Thi Thanh & Atjayutpokin, Thanaphat & Chinwatpaiboon, Piyawat & Smith, Siwaporn Meejoo & Boonyuen, Supakorn & Luengnaruemitchai, Apanee, 2022. "Two-stage acid-alkali pretreatment of vetiver grass to enhance the subsequent sugar release by cellulase digestion," Renewable Energy, Elsevier, vol. 195(C), pages 755-765.
- So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
- Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
- Shangyuan Tang & Yushen Cao & Chunming Xu & Yue Wu & Lingci Li & Peng Ye & Ying Luo & Yifan Gao & Yonghong Liao & Qiong Yan & Xiyu Cheng, 2020. "One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L," Energies, MDPI, vol. 13(4), pages 1-12, February.
- Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
- Zhang, Changwei & Wen, Hao & Chen, Changjing & Cai, Di & Fu, Chaohui & Li, Ping & Qin, Peiyong & Tan, Tianwei, 2019. "Simultaneous saccharification and juice co-fermentation for high-titer ethanol production using sweet sorghum stalk," Renewable Energy, Elsevier, vol. 134(C), pages 44-53.
- Hashemi, Seyed Sajad & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Hydrothermal pretreatment of safflower straw to enhance biogas production," Energy, Elsevier, vol. 172(C), pages 545-554.
- Rezaei, Mahbobe & Amiri, Hamid & Shafiei, Marzieh, 2021. "Aqueous pretreatment of triticale straw for integrated production of hemicellulosic methane and cellulosic butanol," Renewable Energy, Elsevier, vol. 171(C), pages 971-980.
- Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
- Deslin Nadar & Kubendren Naicker & David Lokhat, 2020. "Ultrasonically-Assisted Dissolution of Sugarcane Bagasse during Dilute Acid Pretreatment: Experiments and Kinetic Modeling," Energies, MDPI, vol. 13(21), pages 1-18, October.
- Ding, Kaili & Liu, Dong & Chen, Xueli & Zhang, Hui & Shi, Suan & Guo, Xiaojun & Zhou, Ling & Han, Lujia & Xiao, Weihua, 2024. "Scalable lignocellulosic biorefineries: Technoeconomic review for efficient fermentable sugars production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Dehghanzad, Mahsa & Shafiei, Marzieh & Karimi, Keikhosro, 2020. "Whole sweet sorghum plant as a promising feedstock for biobutanol production via biorefinery approaches: Techno-economic analysis," Renewable Energy, Elsevier, vol. 158(C), pages 332-342.
- Xu, Youjie & Wang, Donghai, 2017. "Integrating starchy substrate into cellulosic ethanol production to boost ethanol titers and yields," Applied Energy, Elsevier, vol. 195(C), pages 196-203.
- Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
- Sha, Hao & Wang, Qing & Dong, Zheng & Cao, Shengxian & Zhao, Bo & Wang, Gong & Duan, Jie, 2024. "NaOH-urea pretreatment enhanced H2 and CH4 yields via optimizing mixed alkali ratio, pretreatment time, and organic loading rate during anaerobic digestion of corn stover," Energy, Elsevier, vol. 288(C).
- Abedini, Amirmohammad & Amiri, Hamid & Karimi, Keikhosro, 2020. "Efficient biobutanol production from potato peel wastes by separate and simultaneous inhibitors removal and pretreatment," Renewable Energy, Elsevier, vol. 160(C), pages 269-277.
- Xu, Jikun & Hou, Huijie & Hu, Jingping & Liu, Bingchuan, 2018. "Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica," Applied Energy, Elsevier, vol. 229(C), pages 745-755.
- Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
- Cheng, Jie & Hu, Sheng-Chun & Geng, Zeng-Chao & Zhu, Ming-Qiang, 2022. "Effect of structural changes of lignin during the microwave-assisted alkaline/ethanol pretreatment on cotton stalk for an effective enzymatic hydrolysis," Energy, Elsevier, vol. 254(PB).
- Zhang, Zhicai & Zheng, Huihua & Qian, Jingya, 2023. "Pretreatment with a combination of steam explosion and NaOH increases butanol production of enzymatically hydrolyzed corn stover," Renewable Energy, Elsevier, vol. 203(C), pages 301-311.
More about this item
Keywords
lignocellulose; combined pretreatment; physical–chemical–biological; biochemical products; sustainable renewable energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:2:y:2024:i:4:p:24-473:d:1513565. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.