IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024775.html
   My bibliography  Save this article

Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling

Author

Listed:
  • Rahmani, Ali Mohammad
  • Tyagi, Vinay Kumar
  • Kazmi, A.A.
  • Ojha, Chandra Shekhar P.

Abstract

Bio-methanation of agro-residue could fulfill the rising energy demands and curb the environmental pollution. Nevertheless, hydrolysis is the rate limiting step in anaerobic digestion (AD) of agro-waste (wheat straw, WS) due to its recalcitrant lignocellulosic composition. Hydrothermal (100–175 °C, 30–120 min) and thermal-acid (100–175 °C, 0.5–2% H2SO4 v/v) pretreatments of WS were performed to assess the pretreatment effects on WS solubilization, recalcitrant formation, lignocellulosic composition and improvement in methane yield. The 60-min hydrothermal pretreatments had an optimum chemical oxygen demand (COD) solubilization. The hydrothermal pretreatment degraded predominantly the hemicellulose by 53.4%. The furan derivatives, i.e., furfural and 5-hydroxyl-methyl-furfural (5-HMF) were formed during hydrothermal pretreatment of WS at 175 °C. The furfural and 5-HMF were generated at all studied thermal-acid pretreatment conditions owing to hemicellulose solubilization. The anaerobic co-digestion (AcoD) of hydrothermally and thermal-acid pretreated WS was performed with food waste and cow manure in a batch assay. The hydrothermally pretreated WS showed 4–14% higher methane production, while the thermal-acid pretreated WS had 29–44% less methane production than untreated WS. High concentrations of furfural, 5-HMF, total volatile fatty acids (tVFA), and NH4–N affected the methane production in digesters treating thermal-acid pretreated WS. The kinetic analysis of the assays revealed that methane production was affected by furfural, 5-HMF, temperature and acid dosing. Therefore, the calculated values through modified Gompertz and logistic models deviated from the experimental values.

Suggested Citation

  • Rahmani, Ali Mohammad & Tyagi, Vinay Kumar & Kazmi, A.A. & Ojha, Chandra Shekhar P., 2023. "Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024775
    DOI: 10.1016/j.energy.2023.129083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.