IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i18p4867-d1748522.html
   My bibliography  Save this article

Power System Decision Making in the Age of Deep Learning: A Comprehensive Review

Author

Listed:
  • Yeji Lim

    (Department of Electronic Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea)

  • Minjae Son

    (Department of Electronic Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea)

  • Kyungnam Park

    (Department of Electronic Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea)

  • Minsoo Kim

    (Department of Energy Engineering, Korea Institute of Energy Technology, 111, Guseong-ro, Naju-si 58330, Jeollanam-do, Republic of Korea)

  • Keunju Song

    (Department of Electronic Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea)

  • Haejoong Lee

    (Department of Electronic Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea)

  • Hongseok Kim

    (Department of Electronic Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea)

Abstract

Modern power systems are facing growing complexity and uncertainty due to electrification, large-scale renewable integration, and evolving consumption behaviors. These changes have pushed traditional numerical optimization methods to their practical limits in terms of scalability and real-time applicability. In response, deep learning approaches that offer fast inference and robustness to uncertainty are gaining significant attention. This paper presents, to the best of our knowledge, the first systematic review from a functional perspective of deep learning research supporting power system decision making. Taking a functional perspective, we classify neural networks into three core roles: learning to predict, learning to surrogate, and learning to optimize. In the first role, neural networks forecast exogenous uncertainties serving as the instance input to operational optimization problems. In the second role, they approximate complex physical constraints, enabling the efficient formulation of problems that would otherwise be analytically intractable. In the third role, neural networks act as learning-based optimizers that either replace or augment conventional solvers. The core purpose of this paper is to emphasize that neural networks should not simply be regarded as generic data-driven tools, but rather as models serving distinct functional roles—each with its own objectives and considerations. In this regard, we introduce diverse approaches aligned with these roles, offering conceptual foundations for principled application in practice. Such functional insights will ultimately guide the design of modular and hybrid architectures that integrate these roles, which in turn may provide the basis for developing domain-specific foundation models for power system operations.

Suggested Citation

  • Yeji Lim & Minjae Son & Kyungnam Park & Minsoo Kim & Keunju Song & Haejoong Lee & Hongseok Kim, 2025. "Power System Decision Making in the Age of Deep Learning: A Comprehensive Review," Energies, MDPI, vol. 18(18), pages 1-49, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4867-:d:1748522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/18/4867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/18/4867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgios Tsoumplekas & Christos Athanasiadis & Dimitrios I. Doukas & Antonios Chrysopoulos & Pericles Mitkas, 2025. "Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach," Energies, MDPI, vol. 18(3), pages 1-23, February.
    2. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    3. Zachary Kilwein & Jordan Jalving & Michael Eydenberg & Logan Blakely & Kyle Skolfield & Carl Laird & Fani Boukouvala, 2023. "Optimization with Neural Network Feasibility Surrogates: Formulations and Application to Security-Constrained Optimal Power Flow," Energies, MDPI, vol. 16(16), pages 1-17, August.
    4. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    5. Burak Kocuk & Santanu S. Dey & X. Andy Sun, 2016. "Strong SOCP Relaxations for the Optimal Power Flow Problem," Operations Research, INFORMS, vol. 64(6), pages 1177-1196, December.
    6. Zhou, Jun & Jia, Yubin & Sun, Changyin, 2025. "Flywheel energy storage system controlled using tube-based deep Koopman model predictive control for wind power smoothing," Applied Energy, Elsevier, vol. 381(C).
    7. Choe, Do-Eun & Kim, Hyoung-Chul & Kim, Moo-Hyun, 2021. "Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades," Renewable Energy, Elsevier, vol. 174(C), pages 218-235.
    8. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    9. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    10. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    11. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    12. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    13. Pascale Bendotti & Pierre Fouilhoux & Cécile Rottner, 2019. "On the complexity of the Unit Commitment Problem," Annals of Operations Research, Springer, vol. 274(1), pages 119-130, March.
    14. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    15. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    16. Bernard Knueven & James Ostrowski & Jean-Paul Watson, 2020. "On Mixed-Integer Programming Formulations for the Unit Commitment Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 857-876, October.
    17. Arvydas Jadevicius & Simon Huston, 2015. "Property market modelling and forecasting: simple vs complex models," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 33(4), pages 337-361, July.
    18. Jiani Zeng & Xianglong Li & Hanqi Dai & Lu Zhang & Weixian Wang & Zihan Zhang & Shengxin Kong & Liwen Xu, 2025. "A Residual Physics-Informed Neural Network Approach for Identifying Dynamic Parameters in Swing Equation-Based Power Systems," Energies, MDPI, vol. 18(11), pages 1-16, May.
    19. Yu, Jianshu & Yong, Pei & Yu, Juan & Yang, Zhifang, 2024. "Frequency security constraint in unit commitment with detailed frequency response behavior of wind turbines," Energy, Elsevier, vol. 313(C).
    20. Xin Ren & Yimei Wang & Zhi Cao & Fuhao Chen & Yujia Li & Jie Yan, 2023. "Feature Transfer and Rapid Adaptation for Few-Shot Solar Power Forecasting," Energies, MDPI, vol. 16(17), pages 1-13, August.
    21. Brusaferri, Alessandro & Ballarino, Andrea & Grossi, Luigi & Laurini, Fabrizio, 2025. "On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices," Applied Energy, Elsevier, vol. 398(C).
    22. Lavoie, M. & Qué-Do, V. & Houle, J.L. & Davidson, J., 1995. "Real-time simulation of power system stability using parallel digital signal processors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(4), pages 283-292.
    23. Mohandes, Mohamed A. & Rehman, Shafiqur & Halawani, Talal O., 1998. "A neural networks approach for wind speed prediction," Renewable Energy, Elsevier, vol. 13(3), pages 345-354.
    24. Kim, Minsoo & Park, Taeseop & Jeong, Jaeik & Kim, Hongseok, 2023. "Stochastic optimization of home energy management system using clustered quantile scenario reduction," Applied Energy, Elsevier, vol. 349(C).
    25. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    26. Arvydas Jadevicius & Simon Huston, 2015. "Property market modelling and forecasting: simple vs complex models," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 33(4), pages 337-361, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    2. Simon Hirsch, 2025. "Online Multivariate Regularized Distributional Regression for High-dimensional Probabilistic Electricity Price Forecasting," Papers 2504.02518, arXiv.org, revised Oct 2025.
    3. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    4. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    5. Bunnak, Phumthep & Coniglio, Stefano & Galelli, Stefano, 2025. "Bridging theory and practice: Efficiently solving the unit commitment problem in production cost models," Energy, Elsevier, vol. 322(C).
    6. Prakash, Abhijith & Bruce, Anna & MacGill, Iain, 2025. "The scheduling role of future pricing information in electricity markets with rising deployments of energy storage: An Australian National Electricity Market case study," Energy Economics, Elsevier, vol. 142(C).
    7. Latify, Mohammad Amin & Mokhtari, Ali & Alavi-Eshkaftaki, Amin & Rajaei Najafabadi, Fatemeh & Hashemian, Seyed Nasrollah & Khaleghizadeh, Ali & Nezamabadi, Hossein & Yousefi Ramandi, Mostafa & Mozdawa, 2025. "Security-constrained unit commitment: Modeling, solutions and evaluations," Applied Energy, Elsevier, vol. 390(C).
    8. Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices," Energies, MDPI, vol. 16(3), pages 1-18, January.
    9. Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
    10. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    13. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2022. "Ensemble solar forecasting and post-processing using dropout neural network and information from neighboring satellite pixels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Oliver Grothe & Fabian Kachele & Fabian Kruger, 2022. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Papers 2204.10154, arXiv.org.
    15. Serafin, Tomasz & Marcjasz, Grzegorz & Weron, Rafał, 2022. "Trading on short-term path forecasts of intraday electricity prices," Energy Economics, Elsevier, vol. 112(C).
    16. Cornell, Cameron & Dinh, Nam Trong & Pourmousavi, S. Ali, 2024. "A probabilistic forecast methodology for volatile electricity prices in the Australian National Electricity Market," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1421-1437.
    17. Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
    18. Lin Deng & Michael Stanley Smith & Worapree Maneesoonthorn, 2023. "Large Skew-t Copula Models and Asymmetric Dependence in Intraday Equity Returns," Papers 2308.05564, arXiv.org, revised Jul 2024.
    19. Katarzyna Maciejowska & Weronika Nitka, 2024. "Multiple split approach -- multidimensional probabilistic forecasting of electricity markets," Papers 2407.07795, arXiv.org.
    20. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4867-:d:1748522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.