IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035138.html
   My bibliography  Save this article

Frequency security constraint in unit commitment with detailed frequency response behavior of wind turbines

Author

Listed:
  • Yu, Jianshu
  • Yong, Pei
  • Yu, Juan
  • Yang, Zhifang

Abstract

With the high penetration of wind turbines, the necessity of incorporating frequency security considerations into power system scheduling rises. Existing methods achieve the explicit modeling of frequency security constraints by simplifying the frequency response behavior of wind turbines. However, simplifications might lead to inaccuracy. To address this issue, this paper models the frequency response from wind turbines in detail and proposes a novel framework to construct the frequency security constraint for unit commitment (UC). First, the frequency security constraint is positioned at the segment that is effective for the dispatch decision instead of the whole boundary, which is unnecessary and complicated. Then, an analytical linear surrogate expression of the frequency security boundary is constructed through a data-driven approach. To ensure the accuracy of the surrogate constraint, a neighborhood sampling strategy is proposed to collect balanced samples. Furthermore, to reduce the linearization error of the surrogate constraints, supplementary constraints are added to restrict the width of the surrogate constraint. Finally, to address the modeling errors that may deviate from the frequency security requirements, a correction strategy is proposed. Case studies validate the proposed method and verify that it exceeds existing methods in the modeling accuracy of the power system frequency security.

Suggested Citation

  • Yu, Jianshu & Yong, Pei & Yu, Juan & Yang, Zhifang, 2024. "Frequency security constraint in unit commitment with detailed frequency response behavior of wind turbines," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035138
    DOI: 10.1016/j.energy.2024.133735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zifeng & Guo, Litao & Yu, Samson S. & Zhang, Mingli & Ren, Yupeng & Zhang, Na & Li, Weidong, 2023. "An efficient full-response analytical model for probabilistic production simulation in fast frequency response reserve planning," Energy, Elsevier, vol. 273(C).
    2. Jiang, Boyou & Guo, Chuangxin & Chen, Zhe, 2024. "Frequency constrained unit commitment considering reserve provision of wind power," Applied Energy, Elsevier, vol. 361(C).
    3. Rao, Yingqing & Yang, Jun & Xiao, Jinxing & Xu, Bingyan & Liu, Wenjing & Li, Yonghui, 2021. "A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaudhary, Aniket Karan & Roy, Satyabrata & Guha, Dipayan & Negi, Richa & Banerjee, Subrata, 2024. "Adaptive cyber-tolerant finite-time frequency control framework for renewable-integrated power system under deception and periodic denial-of-service attacks," Energy, Elsevier, vol. 302(C).
    2. Liu, Mao & Kong, Xiangyu & Xiong, Kaizhi & Wang, Jimin & Lin, Qingxiang, 2025. "Multi-scale spatio-temporal transformer: A novel model reduction approach for day-ahead security-constrained unit commitment," Applied Energy, Elsevier, vol. 380(C).
    3. Jianhua Zhang & Yongyue Wang, 2025. "Coordinated Frequency Control for Electric Vehicles and a Thermal Power Unit via an Improved Recurrent Neural Network," Energies, MDPI, vol. 18(3), pages 1-17, January.
    4. Yuxin Wen & Peixiao Fan & Jia Hu & Song Ke & Fuzhang Wu & Xu Zhu, 2022. "An Optimal Scheduling Strategy of a Microgrid with V2G Based on Deep Q-Learning," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    5. Çelik, Doğan & Meral, Mehmet Emin, 2022. "A coordinated virtual impedance control scheme for three phase four leg inverters of electric vehicle to grid (V2G)," Energy, Elsevier, vol. 246(C).
    6. Juan Moreno-Castro & Victor Samuel Ocaña Guevara & Lesyani Teresa León Viltre & Yandi Gallego Landera & Oscar Cuaresma Zevallos & Miguel Aybar-Mejía, 2023. "Microgrid Management Strategies for Economic Dispatch of Electricity Using Model Predictive Control Techniques: A Review," Energies, MDPI, vol. 16(16), pages 1-24, August.
    7. Wu, Qingyang & Li, Gen & Liu, Ming & Zhang, Yufeng & Yan, Junjie & Deguchi, Yoshihiro, 2024. "The enhancement of primary frequency regulation ability of combined water and power plant based on nuclear energy: Dynamic modelling and control strategy optimization," Energy, Elsevier, vol. 313(C).
    8. Adlan Pradana & Mejbaul Haque & Mithulanathan Nadarajah, 2023. "Control Strategies of Electric Vehicles Participating in Ancillary Services: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-36, February.
    9. Wu, Chuanshen & Jiang, Sufan & Gao, Shan & Liu, Yu & Han, Haiteng, 2022. "Charging demand forecasting of electric vehicles considering uncertainties in a microgrid," Energy, Elsevier, vol. 247(C).
    10. Peixiao Fan & Jia Hu & Song Ke & Yuxin Wen & Shaobo Yang & Jun Yang, 2022. "A Frequency–Pressure Cooperative Control Strategy of Multi-Microgrid with an Electric–Gas System Based on MADDPG," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    11. Sebastian, Oliva H. & Carlos, Bahamonde D., 2024. "Trade-off between frequency stability and renewable generation – Studying virtual inertia from solar PV and operating stability constraints," Renewable Energy, Elsevier, vol. 232(C).
    12. Li, Kun & Fang, Jiakun & Ai, Xiaomeng & Wang, Shengshi & Liu, Jingguan & Cui, Shichang & Yao, Wei & Wen, Jinyu, 2025. "Aggregation and scheduling of massive 5G base station backup batteries using a price-guided orientable inner approximation method," Applied Energy, Elsevier, vol. 380(C).
    13. Li, Xuehan & Wang, Wei & Ye, Lingling & Ren, Guorui & Fang, Fang & Liu, Jizhen & Chen, Zhe & Zhou, Qiang, 2024. "Improving frequency regulation ability for a wind-thermal power system by multi-objective optimized sliding mode control design," Energy, Elsevier, vol. 300(C).
    14. Li, Zhihao & Xu, Yinliang, 2025. "Pricing balancing ancillary services for low-inertia power systems under uncertainty and nonconvexity," Applied Energy, Elsevier, vol. 377(PC).
    15. Ruan, Yimin & Yao, Wei & Zong, Qihang & Zhou, Hongyu & Gan, Wei & Zhang, Xinhao & Li, Shaolin & Wen, Jinyu, 2025. "Online assessment of frequency support capability of the DFIG-based wind farm using a knowledge and data-driven fusion Koopman method," Applied Energy, Elsevier, vol. 377(PB).
    16. Guo, Litao & Li, Weidong & Zhang, Mingze, 2024. "Optimal capacity configuration and operation strategy of typical industry load with energy storage in fast frequency regulation," Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.