IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002812.html
   My bibliography  Save this article

Frequency constrained unit commitment considering reserve provision of wind power

Author

Listed:
  • Jiang, Boyou
  • Guo, Chuangxin
  • Chen, Zhe

Abstract

Large-scale wind power integration not only requires extra flexibility for power system operation but also leads to declining system inertia and raises concerns regarding frequency stability. Pertinent studies have substantiated the capability of wind turbines (WTs) to provide reserves via pitch angle control (PAC) and rotor speed control (RSC). In this study, a comprehensive modeling approach is employed for the first time to capture WTs’ reserve capacities while accounting for the exogenous uncertainty associated with wind speed and the decision-dependent uncertainty regarding the control decisions including pitch angle and rotor speed. Subsequently, a two-stage frequency constrained stochastic unit commitment model incorporating WTs’ reserve provision is formulated to jointly optimize the unit commitment, generation, and reserves from both conventional generating units (CGUs) and WTs. To enhance computational tractability, a deep neural network based framework is adopted in combination with piece-wise linearization to linearize the nonlinear terms regarding PAC and RSC. Furthermore, two solution acceleration strategies tailored to the model’s characteristics are proposed. Case studies show that (i) the proposed model effectively develops the reserve potential of WTs, leading to a reduction in reserve cost and wind curtailment; (ii) the proposed acceleration strategies significantly improve the solution efficiency, reducing the solution time by 62.88% and 15.71% in the IEEE 9-bus and 118-bus systems, respectively.

Suggested Citation

  • Jiang, Boyou & Guo, Chuangxin & Chen, Zhe, 2024. "Frequency constrained unit commitment considering reserve provision of wind power," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002812
    DOI: 10.1016/j.apenergy.2024.122898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.