IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3576-d1696509.html
   My bibliography  Save this article

Microgrids’ Control Strategies and Real-Time Monitoring Systems: A Comprehensive Review

Author

Listed:
  • Kayode Ebenezer Ojo

    (Department of Electrical Electronics and Computer Engineering, University of KwaZulu-Natal, Durban 4001, South Africa)

  • Akshay Kumar Saha

    (Department of Electrical Electronics and Computer Engineering, University of KwaZulu-Natal, Durban 4001, South Africa)

  • Viranjay Mohan Srivastava

    (Department of Electrical Electronics and Computer Engineering, University of KwaZulu-Natal, Durban 4001, South Africa
    Department of Electronics Engineering, Birmingham City University, Birmingham B4 7XG, UK)

Abstract

Microgrids (MGs) technologies, with their advanced control techniques and real-time monitoring systems, provide users with attractive benefits including enhanced power quality, stability, sustainability, and environmentally friendly energy. As a result of continuous technological development, Internet of Things (IoT) architectures and technologies are becoming more and more important to the future smart grid’s creation, control, monitoring, and protection of microgrids. Since microgrids are made up of several components that can function in network distribution mode using AC, DC, and hybrid systems, an appropriate control strategy and monitoring system is necessary to ensure that the power from microgrids is delivered to sensitive loads and the main grid effectively. As a result, this article thoroughly assesses MGs’ control systems and groups them based on their degree of protection, energy conversion, integration, advantages, and disadvantages. The functions of IoT and monitoring systems for MGs’ data analytics, energy transactions, and security threats are also demonstrated in this article. This study also identifies several factors, challenges, and concerns about the long-term advancement of MGs’ control technology. This work can serve as a guide for all upcoming energy management and microgrid monitoring systems.

Suggested Citation

  • Kayode Ebenezer Ojo & Akshay Kumar Saha & Viranjay Mohan Srivastava, 2025. "Microgrids’ Control Strategies and Real-Time Monitoring Systems: A Comprehensive Review," Energies, MDPI, vol. 18(13), pages 1-34, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3576-:d:1696509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leszczyna, Rafał, 2018. "Standards on cyber security assessment of smart grid," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 70-89.
    2. Darioush Razmi & Tianguang Lu, 2022. "A Literature Review of the Control Challenges of Distributed Energy Resources Based on Microgrids (MGs): Past, Present and Future," Energies, MDPI, vol. 15(13), pages 1-21, June.
    3. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    4. Ahmed Rashwan & Alexey Mikhaylov & Tomonobu Senjyu & Mahdiyeh Eslami & Ashraf M. Hemeida & Dina S. M. Osheba, 2023. "Modified Droop Control for Microgrid Power-Sharing Stability Improvement," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    5. Mostafa Kermani & Domenico Luca Carnì & Sara Rotondo & Aurelio Paolillo & Francesco Manzo & Luigi Martirano, 2020. "A Nearly Zero-Energy Microgrid Testbed Laboratory: Centralized Control Strategy Based on SCADA System," Energies, MDPI, vol. 13(8), pages 1-15, April.
    6. Sijia Li & Arman Oshnoei & Frede Blaabjerg & Amjad Anvari-Moghaddam, 2023. "Hierarchical Control for Microgrids: A Survey on Classical and Machine Learning-Based Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    7. Wooho Kim & Yong-Jung Kim & Hyosung Kim, 2018. "Arc Voltage and Current Characteristics in Low-Voltage Direct Current," Energies, MDPI, vol. 11(10), pages 1-14, September.
    8. Paraskevas Koukaras & Konstantinos D. Afentoulis & Pashalis A. Gkaidatzis & Aristeidis Mystakidis & Dimosthenis Ioannidis & Stylianos I. Vagropoulos & Christos Tjortjis, 2024. "Integrating Blockchain in Smart Grids for Enhanced Demand Response: Challenges, Strategies, and Future Directions," Energies, MDPI, vol. 17(5), pages 1-32, February.
    9. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    10. Matej Tkac & Martina Kajanova & Peter Bracinik, 2023. "A Review of Advanced Control Strategies of Microgrids with Charging Stations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    11. Rosini, A. & Labella, A. & Bonfiglio, A. & Procopio, R. & Guerrero, Josep M., 2021. "A review of reactive power sharing control techniques for islanded microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    13. Yan, Mingyu & Teng, Fei & Gan, Wei & Yao, Wei & Wen, Jinyu, 2023. "Blockchain for secure decentralized energy management of multi-energy system using state machine replication," Applied Energy, Elsevier, vol. 337(C).
    14. Pabel Alberto Cárdenas & Maximiliano Martínez & Marcelo Gustavo Molina & Pedro Enrique Mercado, 2023. "Development of Control Techniques for AC Microgrids: A Critical Assessment," Sustainability, MDPI, vol. 15(21), pages 1-28, October.
    15. Can Wang & Can Deng & Guiyuan Li, 2022. "Control Strategy of Interlinking Converter in Hybrid Microgrid Based on Line Impedance Estimation," Energies, MDPI, vol. 15(5), pages 1-16, February.
    16. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    17. Yao Liu & Lin Guan & Fang Guo & Jianping Zheng & Jianfu Chen & Chao Liu & Josep M. Guerrero, 2019. "A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance," Energies, MDPI, vol. 12(16), pages 1-15, August.
    18. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    19. Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kayode Ebenezer Ojo & Akshay Kumar Saha & Viranjay Mohan Srivastava, 2025. "Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities," Energies, MDPI, vol. 18(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayode Ebenezer Ojo & Akshay Kumar Saha & Viranjay Mohan Srivastava, 2025. "Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities," Energies, MDPI, vol. 18(14), pages 1-26, July.
    2. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    3. Tae-Gyu Kim & Hoon Lee & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2023. "Hybrid AC/DC Microgrid Energy Management Strategy Based on Two-Step ANN," Energies, MDPI, vol. 16(4), pages 1-23, February.
    4. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    5. Arıkan Yildiz, Yağmur & Güçyetmez, Mehmet & Aktemur, Cenker, 2025. "3E analysis of a wind-solar-biomass energy generation in context of regional multi-microgrids: A case study of Sivas, Türkiye," Renewable Energy, Elsevier, vol. 246(C).
    6. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    7. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    8. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    9. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    10. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    11. M. Bilal Nasir & Asif Hussain & Kamran Ali Khan Niazi & Mashood Nasir, 2022. "An Optimal Energy Management System (EMS) for Residential and Industrial Microgrids," Energies, MDPI, vol. 15(17), pages 1-18, August.
    12. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    13. Pavel Stanko & Matej Tkac & Martina Kajanova & Marek Roch, 2024. "Impacts of Electric Vehicle Charging Station with Photovoltaic System and Battery Energy Storage System on Power Quality in Microgrid," Energies, MDPI, vol. 17(2), pages 1-22, January.
    14. Sifat, Md. Mhamud Hussen & Choudhury, Safwat Mukarrama & Das, Sajal K. & Pota, Hemanshu & Yang, Fuwen, 2025. "Novel abstractions and experimental validation for digital twin microgrid design: Lab scale studies and large scale proposals," Applied Energy, Elsevier, vol. 377(PC).
    15. Melendez, Kevin A. & Matamala, Yolanda, 2025. "Adversarial attacks in demand-side electricity markets," Applied Energy, Elsevier, vol. 377(PD).
    16. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    17. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    18. Ruben Hidalgo-Leon & Fernando Amoroso & Javier Urquizo & Viviana Villavicencio & Miguel Torres & Pritpal Singh & Guillermo Soriano, 2022. "Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador," Energies, MDPI, vol. 15(5), pages 1-25, February.
    19. Saheb Khanabdal & Mahdi Banejad & Frede Blaabjerg & Nasser Hosseinzadeh, 2021. "A Novel Power Sharing Strategy Based on Virtual Flux Droop and Model Predictive Control for Islanded Low-Voltage AC Microgrids," Energies, MDPI, vol. 14(16), pages 1-17, August.
    20. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3576-:d:1696509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.