IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1007-d1342799.html
   My bibliography  Save this article

Integrating Blockchain in Smart Grids for Enhanced Demand Response: Challenges, Strategies, and Future Directions

Author

Listed:
  • Paraskevas Koukaras

    (Information Technologies Institute, Centre for Research & Technology, 57001 Thessaloniki, Greece
    School of Science and Technology, International Hellenic University, 14th km Thessaloniki-Moudania, 57001 Thessaloniki, Greece)

  • Konstantinos D. Afentoulis

    (Department of Energy Systems, University of Thessaly, Gaiopolis Campus, Ring Road of Larissa-Trikala, 41500 Larissa, Greece)

  • Pashalis A. Gkaidatzis

    (Information Technologies Institute, Centre for Research & Technology, 57001 Thessaloniki, Greece)

  • Aristeidis Mystakidis

    (Information Technologies Institute, Centre for Research & Technology, 57001 Thessaloniki, Greece
    School of Science and Technology, International Hellenic University, 14th km Thessaloniki-Moudania, 57001 Thessaloniki, Greece)

  • Dimosthenis Ioannidis

    (Information Technologies Institute, Centre for Research & Technology, 57001 Thessaloniki, Greece)

  • Stylianos I. Vagropoulos

    (Department of Energy Systems, University of Thessaly, Gaiopolis Campus, Ring Road of Larissa-Trikala, 41500 Larissa, Greece)

  • Christos Tjortjis

    (School of Science and Technology, International Hellenic University, 14th km Thessaloniki-Moudania, 57001 Thessaloniki, Greece)

Abstract

This research, conducted throughout the years 2022 and 2023, examines the role of blockchain technology in optimizing Demand Response (DR) within Smart Grids (SGs). It critically assesses a range of blockchain architectures, evaluating their impact on enhancing DR’s efficiency, security, and consumer engagement. Concurrently, it addresses challenges like scalability, interoperability, and regulatory complexities inherent in merging blockchain with existing energy systems. By integrating theoretical and practical viewpoints, it reveals the potential of blockchain technology to revolutionize Demand Response (DR). Findings affirm that integrating blockchain technology into SGs effectively enhances the efficiency and security of DR, and empirical data illustrate substantial improvements in both cases. Furthermore, key challenges include scalability and interoperability, and also identifying opportunities to enhance consumer engagement and foster system transparency in the adoption of blockchain within DR and SGs. Finally, this work emphasizes the necessity for further investigation to address development hurdles and enhance the effectiveness of blockchain technology in sustainable energy management in SGs.

Suggested Citation

  • Paraskevas Koukaras & Konstantinos D. Afentoulis & Pashalis A. Gkaidatzis & Aristeidis Mystakidis & Dimosthenis Ioannidis & Stylianos I. Vagropoulos & Christos Tjortjis, 2024. "Integrating Blockchain in Smart Grids for Enhanced Demand Response: Challenges, Strategies, and Future Directions," Energies, MDPI, vol. 17(5), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1007-:d:1342799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Qing & Wang, Hao & Wang, Taotao & Zhang, Shengli & Wu, Xiaoxiao & Wang, Hui, 2021. "Blockchain-based decentralized energy management platform for residential distributed energy resources in a virtual power plant," Applied Energy, Elsevier, vol. 294(C).
    2. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    3. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    4. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    2. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    3. Cortade, Thomas & Poudou, Jean-Christophe, 2022. "Peer-to-peer energy platforms: Incentives for prosuming," Energy Economics, Elsevier, vol. 109(C).
    4. Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
    5. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    6. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    8. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    9. El-Baz, Wessam & Tzscheutschler, Peter & Wagner, Ulrich, 2019. "Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies," Applied Energy, Elsevier, vol. 241(C), pages 625-639.
    10. Elkazaz, Mahmoud & Sumner, Mark & Thomas, David, 2021. "A hierarchical and decentralized energy management system for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 291(C).
    11. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    12. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2022. "Comparison of net-metering with peer-to-peer models using the grid and electric vehicles for the electricity exchange," Applied Energy, Elsevier, vol. 310(C).
    13. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    14. Meena, Nand K. & Yang, Jin & Zacharis, Evan, 2019. "Optimisation framework for the design and operation of open-market urban and remote community microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    16. van Leeuwen, Gijs & AlSkaif, Tarek & Gibescu, Madeleine & van Sark, Wilfried, 2020. "An integrated blockchain-based energy management platform with bilateral trading for microgrid communities," Applied Energy, Elsevier, vol. 263(C).
    17. Rumpa Dasgupta & Amin Sakzad & Carsten Rudolph, 2021. "Cyber Attacks in Transactive Energy Market-Based Microgrid Systems," Energies, MDPI, vol. 14(4), pages 1-17, February.
    18. Christie Etukudor & Benoit Couraud & Valentin Robu & Wolf-Gerrit Früh & David Flynn & Chinonso Okereke, 2020. "Automated Negotiation for Peer-to-Peer Electricity Trading in Local Energy Markets," Energies, MDPI, vol. 13(4), pages 1-19, February.
    19. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    20. Henri van Soest, 2018. "Peer-to-peer electricity trading: A review of the legal context," Competition and Regulation in Network Industries, , vol. 19(3-4), pages 180-199, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1007-:d:1342799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.