Author
Listed:
- Dominika Siwiec
(Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland)
- Andrzej Pacana
(Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland)
Abstract
The process of conceptualisation and prototyping of electric energy products is demanding due to the need for a multifaceted approach to product design. This task becomes even more complex during sustainable development, within which supporting techniques are sought. Energy conversion products such as electric motorcycles require special attention due to their impact on energy efficiency, environmental emissions, and operating and production costs. The research gap refers to the lack of a model to aggregate these aspects simultaneously. The objective of the research was to develop a CQ-LCA model (Cost–Quality–Life Cycle Assessment) supporting the creation of alternative product solutions and their evaluation in terms of the following: (i) environmental impact in the life cycle (LCA), (ii) quality, and (iii) production and/or purchase costs. The model was developed in seven main stages and tested for electric motorcycles and their ten prototypes, which are examples of modern products that convert electrical energy into mechanical energy. Using the EDAS method, the quality of electric motorcycle prototypes was calculated. Then, by the LCA method according to ISO 14040, the CO 2 emissions were estimated and modelled adequately to quality change. Next, by the parametric model based on the static method and the cost value function, including the nominal least squares method, the cost was estimated adequately to quality and environmental change. The model provided a qualitative and quantitative interpretation of electric motorcycle prototypes (CQ-LCA), allowing for the consideration of product characteristics, such as engine power, charging time, and battery capacity, but also environmental impacts and costs. The originality is the provision of a multi-aspect morphological analysis, after which different scenarios of product solutions. The model can be useful for various commonly used energy-converting products.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3038-:d:1674475. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.