IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2927-d1670831.html
   My bibliography  Save this article

Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA

Author

Listed:
  • Quan Wang

    (School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
    Key Lab of Modern Manufacture Quality Engineering, Wuhan 430068, China)

  • Zhaogang Zhang

    (School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
    Key Lab of Modern Manufacture Quality Engineering, Wuhan 430068, China)

Abstract

The aerodynamic optimization of the airfoil of vertical-axis wind turbines (VAWTs) is limited by the time-consuming nature of computational fluid dynamics (CFD), resulting in difficulty in the efficient implementation of multi-parameter optimization. In response to this challenge, this study constructed a collaborative optimization framework based on the Kriging surrogate model and the multi-island genetic algorithm (MIGA). Based on the NACA 0015 airfoil, 13 geometric variables (including 12 Bernstein polynomial coefficients and 1 installation angle) were defined through the Classification and Shape Transformation (CST) parameterization method. Through sensitivity analysis, seven key parameters were screened as design variables. Seventy training samples and ten validation samples were generated via Latin hypercube sampling to construct a high-precision Kriging surrogate model (R 2 = 0.91368). The optimized results show that the power coefficient of the new airfoil increases by 14.2% under the condition of the tip velocity ratio (TSR > 1.5), and the average efficiency of the entire working condition increases by 9.8%. The drag reduction mechanism is revealed through pressure cloud maps and velocity field analysis. The area of the high-pressure zone at the leading edge decreases by 23%, and the flow separation phenomenon at the trailing edge is significantly weakened. This research provides an engineering solution that takes into account both computational efficiency and optimization accuracy for the VAWT airfoil design.

Suggested Citation

  • Quan Wang & Zhaogang Zhang, 2025. "Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA," Energies, MDPI, vol. 18(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2927-:d:1670831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    2. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    3. Hao, Wenxing & Li, Chun & Wu, Fuzhong, 2024. "Adaptive blade pitch control method based on an aerodynamic blade oscillator model for vertical axis wind turbines," Renewable Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    3. Zitrou, Athena & Bedford, Tim & Walls, Lesley, 2016. "A model for availability growth with application to new generation offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 83-94.
    4. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    5. WoongHee Jung & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Madison C. Yawn & Luke A. Aucoin, 2024. "Regional storm surge hazard quantification using Gaussian process metamodeling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 755-783, January.
    6. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    7. Xin Wang & Xinchao Jiang & Hu Wang & Guangyao Li, 2025. "Manifold learning-assisted uncertainty quantification of system parameters in the fiber metal laminates hot forming process," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2193-2219, March.
    8. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    9. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    13. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Other publications TiSEM 4915047b-afe4-4fc7-8a1c-4, Tilburg University, School of Economics and Management.
    14. Stephen Ntiri Asomani & Jianping Yuan & Longyan Wang & Desmond Appiah & Kofi Asamoah Adu-Poku, 2020. "The Impact of Surrogate Models on the Multi-Objective Optimization of Pump-As-Turbine (PAT)," Energies, MDPI, vol. 13(9), pages 1-29, May.
    15. Zhang, Yanfeng & Li, Qing'an & Zhu, Xinyu & Song, Xiaowen & Cai, Chang & Zhou, Teng & Kamada, Yasunari & Maeda, Takao & Wang, Ye & Guo, Zhiping, 2022. "Effect of the bionic blade on the flow field of a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 258(C).
    16. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    17. Guo, Shuhao & Li, Xianyue & Šimůnek, Jirí & Wang, Jun & Zhang, Yuehong & Wang, Ya'nan & Zhen, Zhixin & He, Rui, 2024. "Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations," Agricultural Water Management, Elsevier, vol. 305(C).
    18. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    19. Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
    20. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2927-:d:1670831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.