IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2927-d1670831.html
   My bibliography  Save this article

Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA

Author

Listed:
  • Quan Wang

    (School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
    Key Lab of Modern Manufacture Quality Engineering, Wuhan 430068, China)

  • Zhaogang Zhang

    (School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
    Key Lab of Modern Manufacture Quality Engineering, Wuhan 430068, China)

Abstract

The aerodynamic optimization of the airfoil of vertical-axis wind turbines (VAWTs) is limited by the time-consuming nature of computational fluid dynamics (CFD), resulting in difficulty in the efficient implementation of multi-parameter optimization. In response to this challenge, this study constructed a collaborative optimization framework based on the Kriging surrogate model and the multi-island genetic algorithm (MIGA). Based on the NACA 0015 airfoil, 13 geometric variables (including 12 Bernstein polynomial coefficients and 1 installation angle) were defined through the Classification and Shape Transformation (CST) parameterization method. Through sensitivity analysis, seven key parameters were screened as design variables. Seventy training samples and ten validation samples were generated via Latin hypercube sampling to construct a high-precision Kriging surrogate model (R 2 = 0.91368). The optimized results show that the power coefficient of the new airfoil increases by 14.2% under the condition of the tip velocity ratio (TSR > 1.5), and the average efficiency of the entire working condition increases by 9.8%. The drag reduction mechanism is revealed through pressure cloud maps and velocity field analysis. The area of the high-pressure zone at the leading edge decreases by 23%, and the flow separation phenomenon at the trailing edge is significantly weakened. This research provides an engineering solution that takes into account both computational efficiency and optimization accuracy for the VAWT airfoil design.

Suggested Citation

  • Quan Wang & Zhaogang Zhang, 2025. "Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA," Energies, MDPI, vol. 18(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2927-:d:1670831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    2. Hao, Wenxing & Li, Chun & Wu, Fuzhong, 2024. "Adaptive blade pitch control method based on an aerodynamic blade oscillator model for vertical axis wind turbines," Renewable Energy, Elsevier, vol. 223(C).
    3. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    3. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    5. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    6. Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
    7. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    8. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    10. Xuan Li & Xiaoping Zhou & Jingming Hou & Yuan Liu & Shuhong Xue & Huan Ma & Bowen Su, 2024. "A Hydrodynamic Model and Data-Driven Evolutionary Multi-Objective Optimization Algorithm Based Optimal Operation Method for Multi-barrage Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4323-4341, September.
    11. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    12. Wang, Longyan & Xu, Jian & Luo, Wei & Luo, Zhaohui & Xie, Junhang & Yuan, Jianping & Tan, Andy C.C., 2022. "A deep learning-based optimization framework of two-dimensional hydrofoils for tidal turbine rotor design," Energy, Elsevier, vol. 253(C).
    13. Liang Pei & Chunhui Wang & Liying Sun & Lili Wang, 2022. "Temporal and Spatial Variation (2001–2020) Characteristics of Wind Speed in the Water Erosion Area of the Typical Black Soil Region, Northeast China," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    14. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    15. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    16. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    17. Wu, Xu & Kozlowski, Tomasz & Meidani, Hadi, 2018. "Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 422-436.
    18. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    19. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    20. Mert Edali & Gönenç Yücel, 2020. "Analysis of an individual‐based influenza epidemic model using random forest metamodels and adaptive sequential sampling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 936-958, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2927-:d:1670831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.