IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i3d10.1007_s10845-024-02343-0.html
   My bibliography  Save this article

Manifold learning-assisted uncertainty quantification of system parameters in the fiber metal laminates hot forming process

Author

Listed:
  • Xin Wang

    (Hunan University)

  • Xinchao Jiang

    (Hunan University)

  • Hu Wang

    (Hunan University
    Beijing Institute of Technology Shenzhen Automotive Research Institute)

  • Guangyao Li

    (Beijing Institute of Technology Shenzhen Automotive Research Institute)

Abstract

The forming quality of Fiber metal laminates (FMLs) heavily depends on the material properties, fiber placing angles, blank holder force, and other process parameters. In some circumstances, the numerical perturbation of the key parameters has a potential impact on the mechanical properties of final products. To efficiently design a set of available system parameters to ensure the forming quality, a manifold learning-assisted approximate Bayesian computation (ABC) method is proposed to identify system parameters with uncertainties. In this study, the nonlinear manifold learning approach is employed to extract the feature vector of physical field information of sheet metal and composite core after hot forming. Furthermore, the mapping transformation of system parameters based on different modeling techniques is performed to shorten the time of obtaining feature vectors of new samples. The nested sampling method involving the wavelet mutation strategy is proposed to improve the sampling efficiency of the posterior distribution of system parameters while the tolerance criterion is guaranteed. Two hot stamp-forming cases are employed to validate the feasibility of the proposed approach. The numerical results show that the proposed method is effective in obtaining the system parameters necessary for achieving the high-quality forming of FMLs.

Suggested Citation

  • Xin Wang & Xinchao Jiang & Hu Wang & Guangyao Li, 2025. "Manifold learning-assisted uncertainty quantification of system parameters in the fiber metal laminates hot forming process," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2193-2219, March.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02343-0
    DOI: 10.1007/s10845-024-02343-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02343-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02343-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Faping Zhang & Jialun Zhang & Junjiu Ma, 2023. "Data-manifold-based monitoring and anomaly diagnosis for manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3159-3177, October.
    2. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    3. Ahmed Maged & Min Xie, 2023. "Recognition of abnormal patterns in industrial processes with variable window size via convolutional neural networks and AdaBoost," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1941-1963, April.
    4. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    2. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    3. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    4. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    5. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    7. Bertl Johanna & Ewing Gregory & Kosiol Carolin & Futschik Andreas, 2017. "Approximate maximum likelihood estimation for population genetic inference," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 291-312, December.
    8. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    9. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    10. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    11. Cecilia Viscardi & Michele Boreale & Fabio Corradi, 2021. "Weighted approximate Bayesian computation via Sanov’s theorem," Computational Statistics, Springer, vol. 36(4), pages 2719-2753, December.
    12. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    13. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    14. Quan Wang & Zhaogang Zhang, 2025. "Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA," Energies, MDPI, vol. 18(11), pages 1-22, June.
    15. Jung Hsuan & Marjoram Paul, 2011. "Choice of Summary Statistic Weights in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-23, September.
    16. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    17. Xuan Li & Xiaoping Zhou & Jingming Hou & Yuan Liu & Shuhong Xue & Huan Ma & Bowen Su, 2024. "A Hydrodynamic Model and Data-Driven Evolutionary Multi-Objective Optimization Algorithm Based Optimal Operation Method for Multi-barrage Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4323-4341, September.
    18. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    19. Owen Jamie & Wilkinson Darren J. & Gillespie Colin S., 2015. "Likelihood free inference for Markov processes: a comparison," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 189-209, April.
    20. Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02343-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.