Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2016.09.061
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Rejoinder to the discussion of “Analysis of Spatio-Temporal Mobile Phone Data: a Case Study in the Metropolitan Area of Milan”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 335-338, July.
- Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 279-300, July.
- Elvira Romano & Jorge Mateu & Ramon Giraldo, 2015. "On the performance of two clustering methods for spatial functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 467-492, October.
- Laukaitis, Algirdas, 2008. "Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1607-1614, March.
- Laukaitis, Algirdas & Rackauskas, Alfredas, 2005. "Functional data analysis for clients segmentation tasks," European Journal of Operational Research, Elsevier, vol. 163(1), pages 210-216, May.
- Kleijnen, Jack P.C., 2009.
"Kriging metamodeling in simulation: A review,"
European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
- Kleijnen, J.P.C., 2007. "Kriging Metamodeling in Simulation : A Review," Discussion Paper 2007-13, Tilburg University, Center for Economic Research.
- Kleijnen, J.P.C., 2007. "Kriging Metamodeling in Simulation : A Review," Other publications TiSEM 29d6926e-c381-4b58-ae58-8, Tilburg University, School of Economics and Management.
- Giampiero Marra & David L. Miller & Luca Zanin, 2012. "Modelling the spatiotemporal distribution of the incidence of resident foreign population," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(2), pages 133-160, May.
- Nerini, David & Monestiez, Pascal & Manté, Claude, 2010. "Cokriging for spatial functional data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 409-418, February.
- D.‐J. Lee & Z. Zhu & P. Toscas, 2015. "Spatio‐temporal functional data analysis for wireless sensor networks data," Environmetrics, John Wiley & Sons, Ltd., vol. 26(5), pages 354-362, August.
- Kleijnen, Jack P.C. & Mehdad, Ehsan, 2014. "Multivariate versus univariate Kriging metamodels for multi-response simulation models," European Journal of Operational Research, Elsevier, vol. 236(2), pages 573-582.
- Martin-Barragan, Belen & Lillo, Rosa & Romo, Juan, 2014. "Interpretable support vector machines for functional data," European Journal of Operational Research, Elsevier, vol. 232(1), pages 146-155.
- Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
- Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
- Menafoglio, Alessandra & Petris, Giovanni, 2016. "Kriging for Hilbert-space valued random fields: The operatorial point of view," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 84-94.
- Pigoli, Davide & Menafoglio, Alessandra & Secchi, Piercesare, 2016. "Kriging prediction for manifold-valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 117-131.
- Kleijnen, Jack P.C. & Mehdad, E., 2014.
"Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039),"
Other publications TiSEM
8a096696-f700-4cbe-9474-c, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C. & Mehdad, E., 2014. "Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039)," Discussion Paper 2014-012, Tilburg University, Center for Economic Research.
- Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
- Tim Ramsay, 2002. "Spline smoothing over difficult regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 307-319, May.
- Billheimer D. & Guttorp P. & Fagan W.F., 2001. "Statistical Interpretation of Species Composition," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1205-1214, December.
- R. Giraldo & P. Delicado & J. Mateu, 2012. "Hierarchical clustering of spatially correlated functional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(4), pages 403-421, November.
- Lohmann, Timo & Hering, Amanda S. & Rebennack, Steffen, 2016. "Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling," European Journal of Operational Research, Elsevier, vol. 255(1), pages 243-258.
- Simon N. Wood & Mark V. Bravington & Sharon L. Hedley, 2008. "Soap film smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 931-955, November.
- Nicole H. Augustin & Verena M. Trenkel & Simon N. Wood & Pascal Lorance, 2013. "Space‐time modelling of blue ling for fisheries stock management," Environmetrics, John Wiley & Sons, Ltd., vol. 24(2), pages 109-119, March.
- Reggiani, Aura & Nijkamp, Peter & Sabella, Enrico, 2001. "New advances in spatial network modelling: Towards evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 128(2), pages 385-401, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Římalová, Veronika & Fišerová, Eva & Menafoglio, Alessandra & Pini, Alessia, 2022. "Inference for spatial regression models with functional response using a permutational approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Lovato, Ilenia & Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2020. "Model-free two-sample test for network-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
- Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Abramowicz, Konrad & Sjöstedt de Luna, Sara & Strandberg, Johan, 2023. "Nonparametric bagging clustering methods to identify latent structures from a sequence of dependent categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
- Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
- Antonio Balzanella & Antonio Irpino, 2020. "Spatial prediction and spatial dependence monitoring on georeferenced data streams," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 101-128, March.
- Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
- Veronika Římalová & Alessandra Menafoglio & Alessia Pini & Vilém Pechanec & Eva Fišerová, 2020. "A permutation approach to the analysis of spatiotemporal geochemical data in the presence of heteroscedasticity," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
- Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
- Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
- Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
- Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
- Eleonora Arnone & Luca Negri & Ferruccio Panzica & Laura M. Sangalli, 2023. "Analyzing data in complicated 3D domains: Smoothing, semiparametric regression, and functional principal component analysis," Biometrics, The International Biometric Society, vol. 79(4), pages 3510-3521, December.
- Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
- Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Liu, Yushan & Li, Luyi & Zhao, Sihan & Song, Shufang, 2021. "A global surrogate model technique based on principal component analysis and Kriging for uncertainty propagation of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
- Martha Bohorquez & Ramón Giraldo & Jorge Mateu, 2016. "Optimal sampling for spatial prediction of functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 39-54, March.
- Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Mu Niu & Pokman Cheung & Lizhen Lin & Zhenwen Dai & Neil Lawrence & David Dunson, 2019. "Intrinsic Gaussian processes on complex constrained domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 603-627, July.
- Ji Yeh Choi & Heungsun Hwang & Marieke E. Timmerman, 2018. "Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 1-20, March.
- Barry, Ronald P. & McIntyre, Julie & Bernard, Jordan, 2024. "A geostatistical model based on random walks to krige regions with irregular boundaries and holes," Ecological Modelling, Elsevier, vol. 491(C).
- Alexander Gleim & Nazarii Salish, 2022. "Forecasting Environmental Data: An example to ground-level ozone concentration surfaces," Papers 2202.03332, arXiv.org.
- Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
- Alessandro Fassò & Francesco Finazzi & Ferdinand Ndongo, 2016. "European Population Exposure to Airborne Pollutants Based on a Multivariate Spatio-Temporal Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 492-511, September.
- Antonio Balzanella & Antonio Irpino, 2020. "Spatial prediction and spatial dependence monitoring on georeferenced data streams," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 101-128, March.
- Secchi, Piercesare, 2018. "On the role of statistics in the era of big data: A call for a debate," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 10-14.
More about this item
Keywords
Object oriented data analysis; Kriging for object data; Bagging Voronoi algorithm; Spatial regression models with differential regularization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:2:p:401-410. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.