IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v35y2024i8ne2889.html
   My bibliography  Save this article

Modeling Anisotropy and Non‐Stationarity Through Physics‐Informed Spatial Regression

Author

Listed:
  • Matteo Tomasetto
  • Eleonora Arnone
  • Laura M. Sangalli

Abstract

Many spatially dependent phenomena that are of interest in environmental problems are characterized by strong anisotropy and non‐stationarity. Moreover, the data are often observed over regions with complex conformations, such as water bodies with complicated shorelines or regions with complex orography. Furthermore, the distribution of the data locations may be strongly inhomogeneous over space. These issues may challenge popular approaches to spatial data analysis. In this work, we show how we can accurately address these issues by spatial regression with differential regularization. We model the spatial variation by a Partial Differential Equation (PDE), defined upon the considered spatial domain. This PDE may depend upon some unknown parameters that we estimate from the data through an appropriate profiling estimation approach. The PDE may encode some available problem‐specific information on the considered phenomenon, and permit a rich modeling of anisotropy and non‐stationarity. The performances of the proposed approach are compared to competing methods through simulation studies and real data applications. In particular, we analyze rainfall data over Switzerland, characterized by strong anisotropy, and oceanographic data in the Gulf of Mexico, characterized by non‐stationarity due to the Gulf Stream.

Suggested Citation

  • Matteo Tomasetto & Eleonora Arnone & Laura M. Sangalli, 2024. "Modeling Anisotropy and Non‐Stationarity Through Physics‐Informed Spatial Regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(8), December.
  • Handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2889
    DOI: 10.1002/env.2889
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2889
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    2. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    3. Castiglione, Cristian & Arnone, Eleonora & Bernardi, Mauro & Farcomeni, Alessio & Sangalli, Laura M., 2025. "PDE-regularised spatial quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    4. Federico Ferraccioli & Laura M. Sangalli & Livio Finos, 2023. "Nonparametric tests for semiparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1106-1130, September.
    5. Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
    6. Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
    7. Schlather, Martin & Malinowski, Alexander & Menck, Peter J. & Oesting, Marco & Strokorb, Kirstin, 2015. "Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i08).
    8. Robert Alan Richardson, 2017. "Sparsity in nonlinear dynamic spatiotemporal models using implied advection," Environmetrics, John Wiley & Sons, Ltd., vol. 28(6), September.
    9. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    10. Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
    11. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    12. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    14. Tim Ramsay, 2002. "Spline smoothing over difficult regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 307-319, May.
    15. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    16. Eleonora Arnone & Luca Negri & Ferruccio Panzica & Laura M. Sangalli, 2023. "Analyzing data in complicated 3D domains: Smoothing, semiparametric regression, and functional principal component analysis," Biometrics, The International Biometric Society, vol. 79(4), pages 3510-3521, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castiglione, Cristian & Arnone, Eleonora & Bernardi, Mauro & Farcomeni, Alessio & Sangalli, Laura M., 2025. "PDE-regularised spatial quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    2. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    4. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    5. Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
    6. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    7. Federico Ferraccioli & Laura M. Sangalli & Livio Finos, 2023. "Nonparametric tests for semiparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1106-1130, September.
    8. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    9. Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
    10. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    11. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    12. Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
    13. Arnone, Eleonora & Ferraccioli, Federico & Pigolotti, Clara & Sangalli, Laura M., 2022. "A roughness penalty approach to estimate densities over two-dimensional manifolds," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    14. Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2015. "Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i07).
    15. Xavier Barber & David Conesa & Antonio López-Quílez & Joaquín Martínez-Minaya & Iosu Paradinas & Maria Grazia Pennino, 2021. "Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    16. Brown, Patrick E., 2015. "Model-Based Geostatistics the Easy Way," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i12).
    17. Greta Panunzi & Stefano Moro & Isa Marques & Sara Martino & Francesco Colloca & Francesco Ferretti & Giovanna Jona Lasinio, 2025. "Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
    18. Eleonora Arnone & Luca Negri & Ferruccio Panzica & Laura M. Sangalli, 2023. "Analyzing data in complicated 3D domains: Smoothing, semiparametric regression, and functional principal component analysis," Biometrics, The International Biometric Society, vol. 79(4), pages 3510-3521, December.
    19. Alexander Gleim & Nazarii Salish, 2022. "Forecasting Environmental Data: An example to ground-level ozone concentration surfaces," Papers 2202.03332, arXiv.org.
    20. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.