IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i1ne2876.html
   My bibliography  Save this article

Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers

Author

Listed:
  • Greta Panunzi
  • Stefano Moro
  • Isa Marques
  • Sara Martino
  • Francesco Colloca
  • Francesco Ferretti
  • Giovanna Jona Lasinio

Abstract

Conserving oceanic apex predators, such as sharks, is of utmost importance. However, scant abundance and distribution data often challenge understanding the population status of many threatened species. Occurrence records are often scarce and opportunistic, and fieldwork aimed to retrieve additional data is expensive and prone to failure. Integrating various data sources becomes crucial to developing species distribution models for informed sampling and conservation purposes. The white shark, for example, is a rare but persistent inhabitant of the Mediterranean Sea. Here, it is considered Critically Endangered by the IUCN, while population abundance, distribution patterns, and habitat use are still poorly known. This study uses available occurrence records from 1985 to 2021 from diverse sources to construct a spatial log‐Gaussian Cox process, with data‐source specific detection functions and thinning, and accounting for physical barriers. This model estimates white shark presence intensity alongside uncertainty through a Bayesian approach with Integrated Nested Laplace Approximation (INLA) and the inlabru R package. For the first time, we projected species occurrence hot spots and landscapes of relative abundance (continuous measure of animal density in space) throughout the Mediterranean Sea. This approach can be used with other rare species for which presence‐only data from different sources are available.

Suggested Citation

  • Greta Panunzi & Stefano Moro & Isa Marques & Sara Martino & Francesco Colloca & Francesco Ferretti & Giovanna Jona Lasinio, 2025. "Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2876
    DOI: 10.1002/env.2876
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2876
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Simpson & J. B. Illian & F. Lindgren & S. H. Sørbye & H. Rue, 2016. "Going off grid: computationally efficient inference for log-Gaussian Cox processes," Biometrika, Biometrika Trust, vol. 103(1), pages 49-70.
    2. Fernando S. Paolo & David Kroodsma & Jennifer Raynor & Tim Hochberg & Pete Davis & Jesse Cleary & Luca Marsaglia & Sara Orofino & Christian Thomas & Patrick Halpin, 2024. "Satellite mapping reveals extensive industrial activity at sea," Nature, Nature, vol. 625(7993), pages 85-91, January.
    3. Rufener, Marie-Christine & Kinas, Paul Gerhard & Nóbrega, Marcelo Francisco & Lins Oliveira, Jorge Eduardo, 2017. "Bayesian spatial predictive models for data-poor fisheries," Ecological Modelling, Elsevier, vol. 348(C), pages 125-134.
    4. Fernando S. Paolo & David Kroodsma & Jennifer Raynor & Tim Hochberg & Pete Davis & Jesse Cleary & Luca Marsaglia & Sara Orofino & Christian Thomas & Patrick Halpin, 2024. "Author Correction: Satellite mapping reveals extensive industrial activity at sea," Nature, Nature, vol. 626(8000), pages 15-15, February.
    5. Zaida C. Quiroz & Marcos O. Prates & Håvard Rue, 2015. "A Bayesian approach to estimate the biomass of anchovies off the coast of Perú," Biometrics, The International Biometric Society, vol. 71(1), pages 208-217, March.
    6. Francesco Serafini & Finn Lindgren & Mark Naylor, 2023. "Approximation of Bayesian Hawkes process with inlabru," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    7. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    8. Martínez-Minaya, Joaquín & Conesa, David & Bakka, Haakon & Pennino, Maria Grazia, 2019. "Dealing with physical barriers in bottlenose dolphin (Tursiops truncatus) distribution," Ecological Modelling, Elsevier, vol. 406(C), pages 44-49.
    9. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    10. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    11. Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
    12. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    13. Andre M. Boustany & Scott F. Davis & Peter Pyle & Scot D. Anderson & Burney J. Le Boeuf & Barbara A. Block, 2002. "Expanded niche for white sharks," Nature, Nature, vol. 415(6867), pages 35-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Sicacha-Parada & Diego Pavon-Jordan & Ingelin Steinsland & Roel May & Bård Stokke & Ingar Jostein Øien, 2022. "A Spatial Modeling Framework for Monitoring Surveys with Different Sampling Protocols with a Case Study for Bird Abundance in Mid-Scandinavia," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 562-591, September.
    2. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    3. Daniela Silva & Raquel Menezes & Ana Moreno & Ana Teles-Machado & Susana Garrido, 2024. "Environmental Effects on the Spatiotemporal Variability of Sardine Distribution Along the Portuguese Continental Coast," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 553-575, September.
    4. Matteo Tomasetto & Eleonora Arnone & Laura M. Sangalli, 2024. "Modeling Anisotropy and Non‐Stationarity Through Physics‐Informed Spatial Regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(8), December.
    5. I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
    6. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    7. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    8. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    9. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    10. Fernanda Valente & Márcio Laurini, 2020. "Tornado Occurrences in the United States: A Spatio-Temporal Point Process Approach," Econometrics, MDPI, vol. 8(2), pages 1-26, June.
    11. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    12. Mateo, Rubén G. & Arellano, Gabriel & Gómez-Rubio, Virgilio & Tello, J. Sebastián & Fuentes, Alfredo F. & Cayola, Leslie & Loza, M. Isabel & Cala, Victoria & Macía, Manuel J., 2022. "Insights on biodiversity drivers to predict species richness in tropical forests at the local scale," Ecological Modelling, Elsevier, vol. 473(C).
    13. Carlos Díaz-Avalos & Pablo Juan & Somnath Chaudhuri & Marc Sáez & Laura Serra, 2020. "Association between the New COVID-19 Cases and Air Pollution with Meteorological Elements in Nine Counties of New York State," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    14. Yuheng Ling, 2020. "Time, space and hedonic prediction accuracy: evidence from Corsican apartment markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 367-388, April.
    15. Williamson, Laura D. & Scott, Beth E. & Laxton, Megan & Illian, Janine B. & Todd, Victoria L.G. & Miller, Peter I. & Brookes, Kate L., 2022. "Comparing distribution of harbour porpoise using generalized additive models and hierarchical Bayesian models with integrated nested laplace approximation," Ecological Modelling, Elsevier, vol. 470(C).
    16. Marc Francke & Alex Van de Minne, 2021. "Modeling unobserved heterogeneity in hedonic price models," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1315-1339, December.
    17. Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
    18. Ali Arab, 2015. "Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros," IJERPH, MDPI, vol. 12(9), pages 1-13, August.
    19. Coll, M. & Pennino, M. Grazia & Steenbeek, J. & Sole, J. & Bellido, J.M., 2019. "Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches," Ecological Modelling, Elsevier, vol. 405(C), pages 86-101.
    20. Laura Serra & Claudio Detotto & Marco Vannini, 2022. "Public lands as a mitigator of wildfire burned area using a spatio-temporal model applied in Sardinia," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 621-635, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.