IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v473y2022ics0304380022002344.html
   My bibliography  Save this article

Insights on biodiversity drivers to predict species richness in tropical forests at the local scale

Author

Listed:
  • Mateo, Rubén G.
  • Arellano, Gabriel
  • Gómez-Rubio, Virgilio
  • Tello, J. Sebastián
  • Fuentes, Alfredo F.
  • Cayola, Leslie
  • Loza, M. Isabel
  • Cala, Victoria
  • Macía, Manuel J.

Abstract

Disentangling the relative importance of different biodiversity drivers (i.e., climate, edaphic, historical factors, or human impact) to predict plant species richness at the local scale is one of the most important challenges in ecology. Biodiversity modelling is a key tool for the integration of these drivers and the predictions generated are essential, for example, for climate change forecast and conservation planning. However, the reliability of biodiversity models at the local scale remains poorly understood, especially in tropical species-rich areas, where they are required. We inventoried all woody plants with stems ≥ 2.5 cm in 397 plots across the Andes-Amazon gradient. We generated and mapped 19 uncorrelated biodiversity drivers at 90 m resolution, grouped into four categories: microclimatic, microtopographic, anthropic, and edaphic. In order to evaluate the importance of the different categories, we grouped biodiversity drivers into four different clusters by categories. For each of the four clusters of biodiversity drivers, we modelled the observed species richness using two statistical techniques (random forest and Bayesian inference) and two modelling procedures (including or excluding a spatial component). All the biodiversity models produced were evaluated by cross-validation. Species richness was accurately predicted by random forest (Spearman correlation up to 0.85 and explained variance up to 67%). The results suggest that precipitation and temperature are important driving forces of species richness in the region. Nonetheless, a spatial component should be considered to properly predict biodiversity. This could reflect macroevolutionary underlying forces not considered here, such as colonization time, dispersal capacities, or speciation rates. However, the proposed biodiversity modelling approach can predict accurately species richness at the local scale and detailed resolution (90 m) in tropical areas, something that previous works had found extremely challenging. The innovative methodology presented here could be employed in other areas with conservation needs.

Suggested Citation

  • Mateo, Rubén G. & Arellano, Gabriel & Gómez-Rubio, Virgilio & Tello, J. Sebastián & Fuentes, Alfredo F. & Cayola, Leslie & Loza, M. Isabel & Cala, Victoria & Macía, Manuel J., 2022. "Insights on biodiversity drivers to predict species richness in tropical forests at the local scale," Ecological Modelling, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002344
    DOI: 10.1016/j.ecolmodel.2022.110133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022002344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Di Febbraro, Mirko & D’Amen, Manuela & Raia, Pasquale & De Rosa, Davide & Loy, Anna & Guisan, Antoine, 2018. "Using macroecological constraints on spatial biodiversity predictions under climate change: the modelling method matters," Ecological Modelling, Elsevier, vol. 390(C), pages 79-87.
    3. G. Mateo, Rubén & Aroca-Fernández, María José & Gastón, Aitor & Gómez-Rubio, Virgilio & Saura, Santiago & García-Viñas, Juan Ignacio, 2019. "Looking for an optimal hierarchical approach for ecologically meaningful niche modelling," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    4. Belén Fadrique & Selene Báez & Álvaro Duque & Agustina Malizia & Cecilia Blundo & Julieta Carilla & Oriana Osinaga-Acosta & Lucio Malizia & Miles Silman & William Farfán-Ríos & Yadvinder Malhi & Kenne, 2018. "Widespread but heterogeneous responses of Andean forests to climate change," Nature, Nature, vol. 564(7735), pages 207-212, December.
    5. Rubén G Mateo & Ángel M Felicísimo & Julien Pottier & Antoine Guisan & Jesús Muñoz, 2012. "Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    6. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    7. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    8. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ardourel, Gilles & Cantin, Guillaume & Delahaye, Benoît & Derroire, Géraldine & Funatsu, Beatriz M. & Julien, David, 2024. "Computational assessment of Amazon forest plots regrowth capacity under strong spatial variability for simulating logging scenarios," Ecological Modelling, Elsevier, vol. 495(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greta Panunzi & Stefano Moro & Isa Marques & Sara Martino & Francesco Colloca & Francesco Ferretti & Giovanna Jona Lasinio, 2025. "Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
    2. G. Mateo, Rubén & Aroca-Fernández, María José & Gastón, Aitor & Gómez-Rubio, Virgilio & Saura, Santiago & García-Viñas, Juan Ignacio, 2019. "Looking for an optimal hierarchical approach for ecologically meaningful niche modelling," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    3. Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
    4. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    5. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    6. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    7. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    8. I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
    9. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    10. Fasil Wagnew & Kefyalew Addis Alene & Matthew Kelly & Darren Gray, 2023. "Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia," IJERPH, MDPI, vol. 20(21), pages 1-15, October.
    11. Somnath Chaudhuri & Gerard Giménez-Adsuar & Marc Saez & Maria A. Barceló, 2022. "PandemonCAT: Monitoring the COVID-19 Pandemic in Catalonia, Spain," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    12. Vitor Dias Rocio & Márcio Poletti Laurini, 2023. "Bayesian spatio-temporal modeling of real estate launch prices," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-47, December.
    13. Duque-Lazo, J. & van Gils, H. & Groen, T.A. & Navarro-Cerrillo, R.M., 2016. "Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia," Ecological Modelling, Elsevier, vol. 320(C), pages 62-70.
    14. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    15. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    16. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    17. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    18. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    19. Francesca Della Rocca & Pietro Milanesi, 2022. "The New Dominator of the World: Modeling the Global Distribution of the Japanese Beetle under Land Use and Climate Change Scenarios," Land, MDPI, vol. 11(4), pages 1-17, April.
    20. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.