IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v205y2025ics0047259x24000885.html
   My bibliography  Save this article

PDE-regularised spatial quantile regression

Author

Listed:
  • Castiglione, Cristian
  • Arnone, Eleonora
  • Bernardi, Mauro
  • Farcomeni, Alessio
  • Sangalli, Laura M.

Abstract

We consider the problem of estimating the conditional quantiles of an unknown distribution from data gathered on a spatial domain. We propose a spatial quantile regression model with differential regularisation. The penalisation involves a partial differential equation defined over the considered spatial domain, that can display a complex geometry. Such regularisation permits, on one hand, to model complex anisotropy and non-stationarity patterns, possibly on the basis of problem-specific knowledge, and, on the other hand, to comply with the complex conformation of the spatial domain. We define an innovative functional Expectation–Maximisation algorithm, to estimate the unknown quantile surface. We moreover describe a suitable discretisation of the estimation problem, and investigate the theoretical properties of the resulting estimator. The performance of the proposed method is assessed by simulation studies, comparing with state-of-the-art techniques for spatial quantile regression. Finally, the considered model is applied to two real data analyses, the first concerning rainfall measurements in Switzerland and the second concerning sea surface conductivity data in the Gulf of Mexico.

Suggested Citation

  • Castiglione, Cristian & Arnone, Eleonora & Bernardi, Mauro & Farcomeni, Alessio & Sangalli, Laura M., 2025. "PDE-regularised spatial quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:jmvana:v:205:y:2025:i:c:s0047259x24000885
    DOI: 10.1016/j.jmva.2024.105381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    2. Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
    3. Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
    4. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    5. Sabine Schnabel & Paul Eilers, 2013. "Simultaneous estimation of quantile curves using quantile sheets," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 77-87, January.
    6. B. Ettinger & S. Perotto & L. M. Sangalli, 2016. "Spatial regression models over two-dimensional manifolds," Biometrika, Biometrika Trust, vol. 103(1), pages 71-88.
    7. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    8. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    9. Yuzhu Tian & Maozai Tian & Qianqian Zhu, 2014. "Linear Quantile Regression Based on EM Algorithm," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(16), pages 3464-3484, August.
    10. Cora J. M. Maas & Joop J. Hox, 2004. "Robustness issues in multilevel regression analysis," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(2), pages 127-137, May.
    11. Matteo Fasiolo & Simon N. Wood & Margaux Zaffran & Raphaël Nedellec & Yannig Goude, 2021. "Fast Calibrated Additive Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1402-1412, July.
    12. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    13. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    14. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    15. Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
    16. Paolo Frumento & Matteo Bottai & Iván Fernández-Val, 2021. "Parametric Modeling of Quantile Regression Coefficient Functions With Longitudinal Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 783-797, April.
    17. Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
    18. Marco Geraci, 2019. "Additive quantile regression for clustered data with an application to children's physical activity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(4), pages 1071-1089, August.
    19. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    20. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    21. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    22. Federico Ferraccioli & Laura M. Sangalli & Livio Finos, 2023. "Nonparametric tests for semiparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1106-1130, September.
    23. X. He & P. Ng & S. Portnoy, 1998. "Bivariate quantile smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 537-550.
    24. Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
    25. Bosch, Ronald J. & Ye, Yinyu & Woodworth, George G., 1995. "A convergent algorithm for quantile regression with smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 19(6), pages 613-630, June.
    26. Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
    27. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    28. Tim Ramsay, 2002. "Spline smoothing over difficult regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 307-319, May.
    29. Simon N. Wood & Mark V. Bravington & Sharon L. Hedley, 2008. "Soap film smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 931-955, November.
    30. Reiss Philip T. & Huang Lei, 2012. "Smoothness Selection for Penalized Quantile Regression Splines," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-27, May.
    31. Roger Koenker & Ivan Mizera, 2004. "Penalized triograms: total variation regularization for bivariate smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 145-163, February.
    32. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    33. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    34. Paolo Frumento & Matteo Bottai, 2016. "Parametric modeling of quantile regression coefficient functions," Biometrics, The International Biometric Society, vol. 72(1), pages 74-84, March.
    35. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Tomasetto & Eleonora Arnone & Laura M. Sangalli, 2024. "Modeling Anisotropy and Non‐Stationarity Through Physics‐Informed Spatial Regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(8), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Matteo Tomasetto & Eleonora Arnone & Laura M. Sangalli, 2024. "Modeling Anisotropy and Non‐Stationarity Through Physics‐Informed Spatial Regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(8), December.
    3. Federico Ferraccioli & Laura M. Sangalli & Livio Finos, 2023. "Nonparametric tests for semiparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1106-1130, September.
    4. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    5. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    6. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    7. Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
    8. Zhang, Likun & Castillo, Enrique del & Berglund, Andrew J. & Tingley, Martin P. & Govind, Nirmal, 2020. "Computing confidence intervals from massive data via penalized quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Viviana Carcaiso & Leonardo Grilli, 2023. "Quantile regression for count data: jittering versus regression coefficients modelling in the analysis of credits earned by university students after remote teaching," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1061-1082, October.
    10. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    11. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    12. repec:hum:wpaper:sfb649dp2014-030 is not listed on IDEAS
    13. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    14. S. Ghasemzadeh & M. Ganjali & T. Baghfalaki, 2022. "Quantile regression via the EM algorithm for joint modeling of mixed discrete and continuous data based on Gaussian copula," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1181-1202, December.
    15. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    16. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    17. Ranran Chen & Mai Dao & Keying Ye & Min Wang, 2025. "Bayesian adaptive lasso quantile regression with non-ignorable missing responses," Computational Statistics, Springer, vol. 40(3), pages 1643-1682, March.
    18. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    19. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    20. Lan Zhou & Huijun Pan, 2014. "Smoothing noisy data for irregular regions using penalized bivariate splines on triangulations," Computational Statistics, Springer, vol. 29(1), pages 263-281, February.
    21. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:205:y:2025:i:c:s0047259x24000885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.