IDEAS home Printed from
   My bibliography  Save this article

Cokriging for spatial functional data


  • Nerini, David
  • Monestiez, Pascal
  • Manté, Claude


This work proposes to generalize the method of kriging when data are spatially sampled curves. A spatial functional linear model is constructed including spatial dependencies between curves. Under some regularity conditions of the curves, an ordinary kriging system is established in the infinite dimensional case. From a practical point-of-view, the decomposition of the curves into a functional basis boils down the problem of kriging in infinite dimension to a standard cokriging on basis coefficients. The methodological developments are illustrated with temperature profiles sampled with dives of elephant seals in the Antarctic Ocean. The projection of sampled profiles into a Legendre polynomial basis is performed with a regularization procedure based on spline smoothing which uses the variance of the sampling devices in order to estimate coefficients by quadrature.

Suggested Citation

  • Nerini, David & Monestiez, Pascal & Manté, Claude, 2010. "Cokriging for spatial functional data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 409-418, February.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:2:p:409-418

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zhou S. & Shen X., 2001. "Spatially Adaptive Regression Splines and Accurate Knot Selection Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 247-259, March.
    2. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    3. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    4. Pearce, N.D. & Wand, M.P., 2006. "Penalized Splines and Reproducing Kernel Methods," The American Statistician, American Statistical Association, vol. 60, pages 233-240, August.
    5. Meiring, Wendy, 2007. "Oscillations and Time Trends in Stratospheric Ozone Levels: A Functional Data Analysis Approach," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 788-802, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gromenko, Oleksandr & Kokoszka, Piotr, 2013. "Nonparametric inference in small data sets of spatially indexed curves with application to ionospheric trend determination," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 82-94.
    2. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    3. repec:bla:jorssb:v:79:y:2017:i:1:p:177-196 is not listed on IDEAS
    4. Martha Bohorquez & Ramón Giraldo & Jorge Mateu, 2016. "Optimal sampling for spatial prediction of functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 39-54, March.
    5. Benhenni, Karim & Su, Yingcai, 2016. "Optimal sampling designs for nonparametric estimation of spatial averages of random fields," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 341-351.
    6. Ruiz-Medina, M.D., 2011. "Spatial autoregressive and moving average Hilbertian processes," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 292-305, February.
    7. Maria Ruiz-Medina & Rosa Espejo & Elvira Romano, 2014. "Spatial functional normal mixed effect approach for curve classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 257-285, September.
    8. Menafoglio, Alessandra & Petris, Giovanni, 2016. "Kriging for Hilbert-space valued random fields: The operatorial point of view," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 84-94.
    9. Pigoli, Davide & Menafoglio, Alessandra & Secchi, Piercesare, 2016. "Kriging prediction for manifold-valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 117-131.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:2:p:409-418. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.