IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v96y2001mmarchp247-259.html
   My bibliography  Save this article

Spatially Adaptive Regression Splines and Accurate Knot Selection Schemes

Author

Listed:
  • Zhou S.
  • Shen X.

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhou S. & Shen X., 2001. "Spatially Adaptive Regression Splines and Accurate Knot Selection Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 247-259, March.
  • Handle: RePEc:bes:jnlasa:v:96:y:2001:m:march:p:247-259
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2001/00000096/00000453/art00019
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nerini, David & Monestiez, Pascal & Manté, Claude, 2010. "Cokriging for spatial functional data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 409-418, February.
    2. Anestis Antoniadis & Irène Gijbels & Mila Nikolova, 2011. "Penalized likelihood regression for generalized linear models with non-quadratic penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 585-615, June.
    3. Botts, Carsten H. & Daniels, Michael J., 2008. "A flexible approach to Bayesian multiple curve fitting," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5100-5120, August.
    4. Binder, Harald & Sauerbrei, Willi, 2008. "Increasing the usefulness of additive spline models by knot removal," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5305-5318, August.
    5. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:96:y:2001:m:march:p:247-259. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.