IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v108y2017icp70-83.html
   My bibliography  Save this article

Adaptive penalized splines for data smoothing

Author

Listed:
  • Yang, Lianqiang
  • Hong, Yongmiao

Abstract

Data driven adaptive penalized splines are considered via the principle of constrained regression. A locally penalized vector based on the local ranges of the data is generated and added into the penalty matrix of the classical penalized splines, which remarkably improves the local adaptivity of the model for data heterogeneity. The algorithm complexity and simulations are studied. The results show that the adaptive penalized splines outperform the smoothing splines, l1 trend filtering and classical penalized splines in estimating functions with inhomogeneous smoothness.

Suggested Citation

  • Yang, Lianqiang & Hong, Yongmiao, 2017. "Adaptive penalized splines for data smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 70-83.
  • Handle: RePEc:eee:csdana:v:108:y:2017:i:c:p:70-83
    DOI: 10.1016/j.csda.2016.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302493
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Wiesenfarth & Tatyana Krivobokova & Stephan Klasen & Stefan Sperlich, 2012. "Direct Simultaneous Inference in Additive Models and Its Application to Model Undernutrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1286-1296, December.
    2. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    3. Jang, Dongik & Oh, Hee-Seok, 2011. "Enhancement of spatially adaptive smoothing splines via parameterization of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1029-1040, February.
    4. Zhou S. & Shen X., 2001. "Spatially Adaptive Regression Splines and Accurate Knot Selection Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 247-259, March.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    6. Xiao Wang & Pang Du & Jinglai Shen, 2013. "Smoothing splines with varying smoothing parameter," Biometrika, Biometrika Trust, vol. 100(4), pages 955-970.
    7. Alexandre Pintore & Paul Speckman & Chris C. Holmes, 2006. "Spatially adaptive smoothing splines," Biometrika, Biometrika Trust, vol. 93(1), pages 113-125, March.
    8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    9. Scheipl, Fabian & Kneib, Thomas, 2009. "Locally adaptive Bayesian P-splines with a Normal-Exponential-Gamma prior," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3533-3552, August.
    10. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Lattuada, Andrea & Verrall, Richard J., 2023. "Geometrically designed variable knot splines in generalized (non-)linear models," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    2. Soumya D. Mohanty & Ethan Fahnestock, 2021. "Adaptive spline fitting with particle swarm optimization," Computational Statistics, Springer, vol. 36(1), pages 155-191, March.
    3. Fabio Centofanti & Antonio Lepore & Alessandra Menafoglio & Biagio Palumbo & Simone Vantini, 2023. "Adaptive smoothing spline estimator for the function-on-function linear regression model," Computational Statistics, Springer, vol. 38(1), pages 191-216, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    2. Benjamin Owusu & Bettina Bökemeier & Alfred Greiner, 2023. "Assessing nonlinearities and heterogeneity in debt sustainability analysis: a panel spline approach," Empirical Economics, Springer, vol. 64(3), pages 1315-1346, March.
    3. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    5. Timothy K.M. Beatty & Erling Røed Larsen, 2005. "Using Engel curves to estimate bias in the Canadian CPI as a cost of living index," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 482-499, May.
    6. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    7. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    8. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    9. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    10. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    11. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    12. Zi Ye & Giles Hooker & Stephen P. Ellner, 2021. "Generalized Single Index Models and Jensen Effects on Reproduction and Survival," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 492-512, September.
    13. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    15. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    16. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    17. Lauren N. Berry & Nathaniel E. Helwig, 2021. "Cross-Validation, Information Theory, or Maximum Likelihood? A Comparison of Tuning Methods for Penalized Splines," Stats, MDPI, vol. 4(3), pages 1-24, September.
    18. Nagler Thomas & Czado Claudia & Schellhase Christian, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    19. Yukun Zhang & Haocheng Li & Sarah Kozey Keadle & Charles E. Matthews & Raymond J. Carroll, 2019. "A Review of Statistical Analyses on Physical Activity Data Collected from Accelerometers," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 465-476, July.
    20. K. De Brabanter & Y. Liu & C. Hua, 2016. "Convergence rates for uniform confidence intervals based on local polynomial regression estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 31-48, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:108:y:2017:i:c:p:70-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.