IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i4ne70018.html
   My bibliography  Save this article

Learning From Limited Temporal Data: Dynamically Sparse Historical Functional Linear Models With Applications to Earth Science

Author

Listed:
  • Joseph Janssen
  • Shizhe Meng
  • Asad Haris
  • Stefan Schrunner
  • Jiguo Cao
  • William J. Welch
  • Nadja Kunz
  • Ali A. Ameli

Abstract

Scientists and statisticians often seek to understand the complex relationships that connect two time‐varying variables. Recent work on sparse functional historical linear models confirms that they are promising as a tool for obtaining complex and interpretable inferences, but several notable limitations exist. Most importantly, previous works have imposed sparsity on the historical coefficient function, but have not allowed the sparsity, hence lag, to vary with time. We simplify the framework of sparse functional historical linear models by using a rectangular coefficient structure along with Whittaker smoothing, then reduce the assumptions of the previous frameworks by estimating the dynamic time lag from a hierarchical coefficient structure. We motivate our study by aiming to extract the physical rainfall–runoff processes hidden within hydrological data. We show the promise and accuracy of our method using eight simulation studies, further justified by two real sets of hydrological data.

Suggested Citation

  • Joseph Janssen & Shizhe Meng & Asad Haris & Stefan Schrunner & Jiguo Cao & William J. Welch & Nadja Kunz & Ali A. Ameli, 2025. "Learning From Limited Temporal Data: Dynamically Sparse Historical Functional Linear Models With Applications to Earth Science," Environmetrics, John Wiley & Sons, Ltd., vol. 36(4), May.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:4:n:e70018
    DOI: 10.1002/env.70018
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70018
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harezlak, Jaroslaw & Coull, Brent A. & Laird, Nan M. & Magari, Shannon R. & Christiani, David C., 2007. "Penalized solutions to functional regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4911-4925, June.
    2. Dagenais, Marcel G., 1994. "Parameter estimation in regression models with errors in the variables and autocorrelated disturbances," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 145-163.
    3. Suhasini Subba Rao, 2004. "On multiple regression models with nonstationary correlated errors," Biometrika, Biometrika Trust, vol. 91(3), pages 645-659, September.
    4. Pagano, Marcello & Hartley, Michael J., 1981. "On fitting distributed lag models subject to polynomial restrictions," Journal of Econometrics, Elsevier, vol. 16(2), pages 171-198, June.
    5. Thursby, Jerry G., 1987. "OLS or GLS in the presence of specification error? : An expected loss approach," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 359-374, July.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. MacDonald, Blake & Ranjan, Pritam & Chipman, Hugh, 2015. "GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i12).
    8. Chatterjee, A. & Lahiri, S. N., 2011. "Bootstrapping Lasso Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 608-625.
    9. Mizon, Grayham E., 1995. "A simple message for autocorrelation correctors: Don't," Journal of Econometrics, Elsevier, vol. 69(1), pages 267-288, September.
    10. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    11. Schmidt, Peter, 1971. "Estimation of a Distributed Lag Model with Second Order Autoregressive Disturbances: A Monte Carlo Experiment," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 12(3), pages 372-380, October.
    12. Centofanti, Fabio & Fontana, Matteo & Lepore, Antonio & Vantini, Simone, 2022. "Smooth LASSO estimator for the Function-on-Function linear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    13. Gupta, Y. P., 1968. "An Efficient Method Of Estimating A Distributed Lag Model," Econometric Institute Archives 272027, Erasmus University Rotterdam.
    14. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    15. Cook, Scott J. & Webb, Clayton, 2021. "Lagged Outcomes, Lagged Predictors, and Lagged Errors: A Clarification on Common Factors," Political Analysis, Cambridge University Press, vol. 29(4), pages 561-569, October.
    16. Tsay, Ruey S, 1985. "Model Identification in Dynamic Regression (Distributed Lag) Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 228-237, June.
    17. Yang, Lianqiang & Hong, Yongmiao, 2017. "Adaptive penalized splines for data smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 70-83.
    18. Alastair M. Rushworth & Adrian W. Bowman & Mark J. Brewer & Simon J. Langan, 2013. "Distributed Lag Models for Hydrological Data," Biometrics, The International Biometric Society, vol. 69(2), pages 537-544, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Audrino, Francesco & Camponovo, Lorenzo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Economics Working Paper Series 1327, University of St. Gallen, School of Economics and Political Science.
    3. Mihai C. Giurcanu, 2017. "Oracle M-Estimation for Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 479-504, May.
    4. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
    5. Kun Chen & Kung-Sik Chan & Nils Chr. Stenseth, 2014. "Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis-With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 560-573, June.
    6. Chatterjee, A. & Gupta, S. & Lahiri, S.N., 2015. "On the residual empirical process based on the ALASSO in high dimensions and its functional oracle property," Journal of Econometrics, Elsevier, vol. 186(2), pages 317-324.
    7. repec:hum:wpaper:sfb649dp2017-023 is not listed on IDEAS
    8. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    9. Li, Xinjue & Zbonakova, Lenka & Härdle, Wolfgang Karl, 2017. "Penalized adaptive method in forecasting with large information set and structure change," SFB 649 Discussion Papers 2017-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Qin, Yichen & Wang, Linna & Li, Yang & Li, Rong, 2023. "Visualization and assessment of model selection uncertainty," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    11. Zareei, Abalfazl, 2019. "Network origins of portfolio risk," Journal of Banking & Finance, Elsevier, vol. 109(C).
    12. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    13. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    14. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    15. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    16. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    17. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    18. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    19. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    20. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    21. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:4:n:e70018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.