IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v176y2022ics0167947322001360.html
   My bibliography  Save this article

Smooth LASSO estimator for the Function-on-Function linear regression model

Author

Listed:
  • Centofanti, Fabio
  • Fontana, Matteo
  • Lepore, Antonio
  • Vantini, Simone

Abstract

A new estimator, named S-LASSO, is proposed for the coefficient function of the Function-on-Function linear regression model. The S-LASSO estimator is shown to be able to increase the interpretability of the model, by better locating regions where the coefficient function is zero, and to smoothly estimate non-zero values of the coefficient function. The sparsity of the estimator is ensured by a functional LASSO penalty, which pointwise shrinks toward zero the coefficient function, while the smoothness is provided by two roughness penalties that penalize the curvature of the final estimator. The resulting estimator is proved to be estimation and pointwise sign consistent. Via an extensive Monte Carlo simulation study, the estimation and predictive performance of the S-LASSO estimator are shown to be better than (or at worst comparable with) competing estimators already presented in the literature before. Practical advantages of the S-LASSO estimator are illustrated through the analysis of the Canadian weather, Swedish mortality and ship CO2emission data. The S-LASSO method is implemented in the R package slasso, openly available online on CRAN.

Suggested Citation

  • Centofanti, Fabio & Fontana, Matteo & Lepore, Antonio & Vantini, Simone, 2022. "Smooth LASSO estimator for the Function-on-Function linear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001360
    DOI: 10.1016/j.csda.2022.107556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322001360
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Cardot, Herve & Crambes, Christophe & Kneip, Alois & Sarda, Pascal, 2007. "Smoothing splines estimators in functional linear regression with errors-in-variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4832-4848, June.
    4. Canale, Antonio & Vantini, Simone, 2016. "Constrained functional time series: Applications to the Italian gas market," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1340-1351.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    7. Christian Capezza & Antonio Lepore & Alessandra Menafoglio & Biagio Palumbo & Simone Vantini, 2020. "Control charts for monitoring ship operating conditions and CO2 emissions based on scalar‐on‐function regression," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 477-500, May.
    8. Xiaoxiao Sun & Pang Du & Xiao Wang & Ping Ma, 2018. "Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1601-1611, October.
    9. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    10. Chiou, Jeng-Min & Müller, Hans-Georg, 2009. "Modeling Hazard Rates as Functional Data for the Analysis of Cohort Lifetables and Mortality Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 572-585.
    11. Konrad Abramowicz & Charlotte K. Häger & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Simone Vantini, 2018. "Nonparametric inference for functional‐on‐scalar linear models applied to knee kinematic hop data after injury of the anterior cruciate ligament," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(4), pages 1036-1061, December.
    12. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    13. Marco S. Reis & Ricardo Rendall & Biagio Palumbo & Antonio Lepore & Christian Capezza, 2020. "Predicting ships' CO2 emissions using feature‐oriented methods," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(1), pages 110-123, January.
    14. Gareth M. James & Peter Radchenko, 2009. "A generalized Dantzig selector with shrinkage tuning," Biometrika, Biometrika Trust, vol. 96(2), pages 323-337.
    15. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    16. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eskandari, Hamidreza & Saadatmand, Hassan & Ramzan, Muhammad & Mousapour, Mobina, 2024. "Innovative framework for accurate and transparent forecasting of energy consumption: A fusion of feature selection and interpretable machine learning," Applied Energy, Elsevier, vol. 366(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Centofanti & Antonio Lepore & Alessandra Menafoglio & Biagio Palumbo & Simone Vantini, 2023. "Adaptive smoothing spline estimator for the function-on-function linear regression model," Computational Statistics, Springer, vol. 38(1), pages 191-216, March.
    2. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    6. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    7. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    8. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.
    9. Craig, Sarah J.C. & Kenney, Ana M. & Lin, Junli & Paul, Ian M. & Birch, Leann L. & Savage, Jennifer S. & Marini, Michele E. & Chiaromonte, Francesca & Reimherr, Matthew L. & Makova, Kateryna D., 2023. "Constructing a polygenic risk score for childhood obesity using functional data analysis," Econometrics and Statistics, Elsevier, vol. 25(C), pages 66-86.
    10. Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
    11. Md Showaib Rahman Sarker & Michael Pokojovy & Sangjin Kim, 2019. "On the Performance of Variable Selection and Classification via Rank-Based Classifier," Mathematics, MDPI, vol. 7(5), pages 1-16, May.
    12. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    13. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    14. Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    15. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    16. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    17. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    18. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    19. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    20. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.