IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v194y2023ics0047259x22000951.html
   My bibliography  Save this article

Robust penalized estimators for functional linear regression

Author

Listed:
  • Kalogridis, Ioannis
  • Van Aelst, Stefan

Abstract

Functional data analysis is a fast evolving branch of statistics, but estimation procedures for the popular functional linear model either suffer from lack of robustness or are computationally burdensome. To address these shortcomings, a flexible family of penalized lower-rank estimators based on a bounded loss function is proposed. The proposed class of estimators is shown to be consistent and can attain high rates of convergence with respect to prediction error under weak regularity conditions. These results can be generalized to higher dimensions under similar assumptions. The finite-sample performance of the proposed family of estimators is investigated by a Monte-Carlo study which shows that these estimators reach high efficiency while offering protection against outliers. The proposed estimators compare favourably to existing robust as well as non-robust approaches. The good performance of our method is also illustrated on a complex real dataset.

Suggested Citation

  • Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:jmvana:v:194:y:2023:i:c:s0047259x22000951
    DOI: 10.1016/j.jmva.2022.105104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    2. Boente, Graciela & Salibian-Barrera, Matías & Vena, Pablo, 2020. "Robust estimation for semi-functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, Enero-Abr.
    4. Tang Qingguo, 2017. "M-estimation for functional linear regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(8), pages 3782-3800, April.
    5. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    6. Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
    7. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.
    8. Maronna, Ricardo A. & Yohai, Victor J., 2013. "Robust functional linear regression based on splines," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 46-55.
    9. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, Enero-Abr.
    10. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    11. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    12. J. Ramsay, 1982. "When the data are functions," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 379-396, December.
    13. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalogridis, Ioannis, 2024. "Robust and adaptive functional logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalogridis, Ioannis, 2024. "Robust and adaptive functional logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    2. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    3. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    4. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    5. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    6. Afonso, António & Alves, José & Beck, Krzysztof & Jackson, Karen, 2024. "Financial, institutional, and macroeconomic determinants of cross-country portfolio equity flows: The case of developed countries," Economic Modelling, Elsevier, vol. 141(C).
    7. Nolan, Tui H. & Richardson, Sylvia & Ruffieux, Hélène, 2025. "Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    8. Zanin, Luca, 2023. "A flexible estimation of sectoral portfolio exposure to climate transition risks in the European stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    9. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    10. Rachid Muleia & Shelsea Luís Damião & Áuria Ribeiro Banze & Cynthia Semá Baltazar & Isaac Akpor Adjei, 2025. "Factors associated with early sexual debut among adolescents and youth in Mozambique: A geo-additive survival analysis of the Mozambique 2021 AIDS indicator survey," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-17, June.
    11. Qi Qian & Danh V. Nguyen & Esra Kürüm & Connie M. Rhee & Sudipto Banerjee & Yihao Li & Damla Şentürk, 2024. "Multivariate Varying Coefficient Spatiotemporal Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 761-786, December.
    12. Yu Liu & Chin-Shang Li, 2023. "A linear spline Cox cure model with its applications," Computational Statistics, Springer, vol. 38(2), pages 935-954, June.
    13. Elizabeth Goult & Laura Andrea Barrero Guevara & Michael Briga & Matthieu Domenech de Cellès, 2024. "Estimating the optimal age for infant measles vaccination," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
    15. Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
    16. Benjamin Owusu & Bettina Bökemeier & Alfred Greiner, 2023. "Assessing nonlinearities and heterogeneity in debt sustainability analysis: a panel spline approach," Empirical Economics, Springer, vol. 64(3), pages 1315-1346, March.
    17. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. Maximilian Osterhaus, 2024. "A Sparse Grid Approach for the Nonparametric Estimation of High-Dimensional Random Coefficient Models," Papers 2408.07185, arXiv.org.
    19. Goepp, Vivien & Bouaziz, Olivier & Nuel, Grégory, 2025. "Spline regression with automatic knot selection," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
    20. Hamid Mraoui & Ahmed El-Alaoui & Souad Bechrouri & Nezha Mohaoui & Abdelilah Monir, 2025. "Two-stage regression spline modeling based on local polynomial kernel regression," Computational Statistics, Springer, vol. 40(1), pages 383-403, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:194:y:2023:i:c:s0047259x22000951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.