IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i1d10.1007_s00180-024-01498-x.html
   My bibliography  Save this article

Two-stage regression spline modeling based on local polynomial kernel regression

Author

Listed:
  • Hamid Mraoui

    (Mohammed First University)

  • Ahmed El-Alaoui

    (Moulay Ismail University of Meknès)

  • Souad Bechrouri

    (Mohammed First University)

  • Nezha Mohaoui

    (Moulay Ismail University of Meknès)

  • Abdelilah Monir

    (Moulay Ismail University of Meknès)

Abstract

This paper introduces a new nonparametric estimator of the regression based on local quasi-interpolation spline method. This model combines a B-spline basis with a simple local polynomial regression, via blossoming approach, to produce a reduced rank spline like smoother. Different coefficients functionals are allowed to have different smoothing parameters (bandwidths) if the function has different smoothness. In addition, the number and location of the knots of this estimator are not fixed. In practice, we may employ a modest number of basis functions and then determine the smoothing parameter as the minimizer of the criterion. In simulations, the approach achieves very competitive performance with P-spline and smoothing spline methods. Simulated data and a real data example are used to illustrate the effectiveness of the method proposed in this paper.

Suggested Citation

  • Hamid Mraoui & Ahmed El-Alaoui & Souad Bechrouri & Nezha Mohaoui & Abdelilah Monir, 2025. "Two-stage regression spline modeling based on local polynomial kernel regression," Computational Statistics, Springer, vol. 40(1), pages 383-403, January.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01498-x
    DOI: 10.1007/s00180-024-01498-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01498-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01498-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, June.
    2. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    3. Lu, Zhan-Qian, 1996. "Multivariate Locally Weighted Polynomial Fitting and Partial Derivative Estimation," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 187-205, November.
    4. Andrews, Donald W. K., 1991. "Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 359-377, February.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, June.
    6. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
    2. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    3. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    4. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    5. Charnigo, Richard & Feng, Limin & Srinivasan, Cidambi, 2015. "Nonparametric and semiparametric compound estimation in multiple covariates," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 179-196.
    6. Elizabeth Goult & Laura Andrea Barrero Guevara & Michael Briga & Matthieu Domenech de Cellès, 2024. "Estimating the optimal age for infant measles vaccination," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
    8. Goepp, Vivien & Bouaziz, Olivier & Nuel, Grégory, 2025. "Spline regression with automatic knot selection," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
    9. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    10. Shouhao Zhou & Xuelin Huang & Chan Shen & Hagop M. Kantarjian, 2024. "Bayesian Learning of Personalized Longitudinal Biomarker Trajectory," Annals of Data Science, Springer, vol. 11(3), pages 1031-1050, June.
    11. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    12. Afonso, António & Alves, José & Beck, Krzysztof & Jackson, Karen, 2024. "Financial, institutional, and macroeconomic determinants of cross-country portfolio equity flows: The case of developed countries," Economic Modelling, Elsevier, vol. 141(C).
    13. Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
    14. Giancarlo Aquila & Lucas Barros Scianni Morais & Victor Augusto Durães de Faria & José Wanderley Marangon Lima & Luana Medeiros Marangon Lima & Anderson Rodrigo de Queiroz, 2023. "An Overview of Short-Term Load Forecasting for Electricity Systems Operational Planning: Machine Learning Methods and the Brazilian Experience," Energies, MDPI, vol. 16(21), pages 1-35, November.
    15. Nolan, Tui H. & Richardson, Sylvia & Ruffieux, Hélène, 2025. "Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    16. Ioannis Kalogridis & Gerda Claeskens & Stefan Aelst, 2023. "Robust and efficient estimation of nonparametric generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1055-1078, September.
    17. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    18. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    19. Waleed B. Altukhaes & Mahdi Roozbeh & Nur A. Mohamed, 2024. "Robust Liu Estimator Used to Combat Some Challenges in Partially Linear Regression Model by Improving LTS Algorithm Using Semidefinite Programming," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    20. Benjamin Owusu & Bettina Bökemeier & Alfred Greiner, 2023. "Assessing nonlinearities and heterogeneity in debt sustainability analysis: a panel spline approach," Empirical Economics, Springer, vol. 64(3), pages 1315-1346, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01498-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.