IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i3d10.1007_s11749-023-00866-x.html
   My bibliography  Save this article

Robust and efficient estimation of nonparametric generalized linear models

Author

Listed:
  • Ioannis Kalogridis

    (KU Leuven)

  • Gerda Claeskens

    (KU Leuven)

  • Stefan Aelst

    (KU Leuven)

Abstract

Generalized linear models are flexible tools for the analysis of diverse datasets, but the classical formulation requires that the parametric component is correctly specified and the data contain no atypical observations. To address these shortcomings, we introduce and study a family of nonparametric full-rank and lower-rank spline estimators that result from the minimization of a penalized density power divergence. The proposed class of estimators is easily implementable, offers high protection against outlying observations and can be tuned for arbitrarily high efficiency in the case of clean data. We show that under weak assumptions, these estimators converge at a fast rate and illustrate their highly competitive performance on a simulation study and two real-data examples.

Suggested Citation

  • Ioannis Kalogridis & Gerda Claeskens & Stefan Aelst, 2023. "Robust and efficient estimation of nonparametric generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1055-1078, September.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00866-x
    DOI: 10.1007/s11749-023-00866-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00866-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00866-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christophe Croux & Irène Gijbels & Ilaria Prosdocimi, 2012. "Robust Estimation of Mean and Dispersion Functions in Extended Generalized Additive Models," Biometrics, The International Biometric Society, vol. 68(1), pages 31-44, March.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, Enero.
    4. Pearce, N.D. & Wand, M.P., 2006. "Penalized Splines and Reproducing Kernel Methods," The American Statistician, American Statistical Association, vol. 60, pages 233-240, August.
    5. Bianco, Ana M. & Boente, Graciela & Sombielle, Susana, 2011. "Robust estimation for nonparametric generalized regression," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1986-1994.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, Enero.
    7. Alimadad, Azadeh & Salibian-Barrera, Matias, 2011. "An Outlier-Robust Fit for Generalized Additive Models With Applications to Disease Outbreak Detection," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 719-731.
    8. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    9. Young‐Ju Kim & Chong Gu, 2004. "Smoothing spline Gaussian regression: more scalable computation via efficient approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 337-356, May.
    10. Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503, April.
    11. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, Enero.
    12. Gerda Claeskens & Tatyana Krivobokova & Jean D. Opsomer, 2009. "Asymptotic properties of penalized spline estimators," Biometrika, Biometrika Trust, vol. 96(3), pages 529-544.
    13. Sancharee Basak & Ayanendranath Basu & M. C. Jones, 2021. "On the ‘optimal’ density power divergence tuning parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(3), pages 536-556, February.
    14. Xueqin Wang & Yunlu Jiang & Mian Huang & Heping Zhang, 2013. "Robust Variable Selection With Exponential Squared Loss," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 632-643, June.
    15. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuma Yoshida, 2019. "Two stage smoothing in additive models with missing covariates," Statistical Papers, Springer, vol. 60(6), pages 1803-1826, December.
    2. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    3. Gao, Yan & Zhang, Xinyu & Wang, Shouyang & Zou, Guohua, 2016. "Model averaging based on leave-subject-out cross-validation," Journal of Econometrics, Elsevier, vol. 192(1), pages 139-151.
    4. Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
    5. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    6. Zhongqi Liang & Qihua Wang, 2023. "A robust model averaging approach for partially linear models with responses missing at random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1933-1952, December.
    7. Kalogridis, Ioannis & Van Aelst, Stefan, 2024. "Robust penalized spline estimation with difference penalties," Econometrics and Statistics, Elsevier, vol. 29(C), pages 169-188.
    8. Kauermann Goeran & Krivobokova Tatyana & Semmler Willi, 2011. "Filtering Time Series with Penalized Splines," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-28, March.
    9. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    10. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    11. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    12. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    13. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    14. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. I. Gijbels & I. Prosdocimi & G. Claeskens, 2010. "Nonparametric estimation of mean and dispersion functions in extended generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 580-608, November.
    16. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    17. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    18. Afonso, António & Alves, José & Beck, Krzysztof & Jackson, Karen, 2024. "Financial, institutional, and macroeconomic determinants of cross-country portfolio equity flows: The case of developed countries," Economic Modelling, Elsevier, vol. 141(C).
    19. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    20. Nolan, Tui H. & Richardson, Sylvia & Ruffieux, Hélène, 2025. "Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00866-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.