Spatiotemporal differentiation characteristics of flood risk based on spatial statistical analysis: a study of Jing–Jin–Ji region in China
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-024-06876-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
- Campos, R.M. & Guedes Soares, C., 2018. "Spatial distribution of offshore wind statistics on the coast of Portugal using Regional Frequency Analysis," Renewable Energy, Elsevier, vol. 123(C), pages 806-816.
- Yang, Yueting & Li, Kaiwei & Wei, Sicheng & Guga, Suri & Zhang, Jiquan & Wang, Chunyi, 2022. "Spatial-temporal distribution characteristics and hazard assessment of millet drought disaster in Northern China under climate change," Agricultural Water Management, Elsevier, vol. 272(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
- Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
- Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
- Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
- Guga, Suri & Ma, Yining & Riao, Dao & Zhi, Feng & Xu, Jie & Zhang, Jiquan, 2023. "Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China," Agricultural Water Management, Elsevier, vol. 275(C).
- Joanna Wicher-Dysarz & Tomasz Dysarz & Joanna Jaskuła, 2022. "Uncertainty in Determination of Meteorological Drought Zones Based on Standardized Precipitation Index in the Territory of Poland," IJERPH, MDPI, vol. 19(23), pages 1-18, November.
- Veronika Římalová & Alessandra Menafoglio & Alessia Pini & Vilém Pechanec & Eva Fišerová, 2020. "A permutation approach to the analysis of spatiotemporal geochemical data in the presence of heteroscedasticity," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
- Díaz, H. & Guedes Soares, C., 2022. "A novel multi-criteria decision-making model to evaluate floating wind farm locations," Renewable Energy, Elsevier, vol. 185(C), pages 431-454.
- Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
- Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
- Lovato, Ilenia & Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2020. "Model-free two-sample test for network-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Antonio Balzanella & Antonio Irpino, 2020. "Spatial prediction and spatial dependence monitoring on georeferenced data streams," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 101-128, March.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
- Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Abramowicz, Konrad & Sjöstedt de Luna, Sara & Strandberg, Johan, 2023. "Nonparametric bagging clustering methods to identify latent structures from a sequence of dependent categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Chenle Xue & Dan Qiao & Noshaba Aziz, 2022. "Influence of Natural Disaster Shock and Collective Action on Farmland Transferees’ No-Tillage Technology Adoption in China," Land, MDPI, vol. 11(9), pages 1-23, September.
- He, Junyi & Chan, P.W. & Li, Qiusheng & Lee, C.W., 2020. "Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong," Energy, Elsevier, vol. 201(C).
- Římalová, Veronika & Fišerová, Eva & Menafoglio, Alessandra & Pini, Alessia, 2022. "Inference for spatial regression models with functional response using a permutational approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Zhou, Shiwei & Ye, Fan & Xia, Dufei & Liu, Zijin & Wu, Yangzhong & Chen, Fu, 2023. "Climate change impacts assessment and developing adaptation strategies for rainfed foxtail millet in northern Shanxi, China," Agricultural Water Management, Elsevier, vol. 290(C).
- Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.
More about this item
Keywords
Flood hazard; Spatial autocorrelation; Risk clustering; Multisource data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06876-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.