IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i2d10.1007_s11069-024-06876-8.html
   My bibliography  Save this article

Spatiotemporal differentiation characteristics of flood risk based on spatial statistical analysis: a study of Jing–Jin–Ji region in China

Author

Listed:
  • Lei Gao

    (Institute of Disaster Prevention)

  • Xiaoxue Liu

    (Institute of Disaster Prevention
    Institute of Disaster Prevention)

  • Hao Liu

    (Institute of Disaster Prevention
    Institute of Disaster Prevention)

Abstract

Torrential rains frequently lead to severe flood damage, a prevalent disaster in China. Significantly, the enduring flood risk stems from the decoupling of rainfall's spatial and temporal variability and the existing flood prevention capabilities. This study delves into the spatial characteristics of flood risk, focusing on risk identification, spatial autocorrelation, and clustering to enhance flood control planning and management strategies. Through the development of a flood risk assessment indicator system, utilizing multiple data sources, the study identifies risk zones within the target area. An integrated framework combining spatial autocorrelation with risk clustering is then introduced to examine the spatial clustering tendencies of flood disaster risk more closely. Applying county-wide data from the Jing–Jin–Ji region, the study evaluates flood risk indicators and validates the research methodology through visualization techniques. Analysis of the spatial characteristics of flood risk culminates in actionable planning and policy recommendations. Offering insights into flood risk management, urban infrastructure development, and adaptive strategies from diverse viewpoints, this study serves as a resourceful guide for mitigating flood risk and safeguarding human lives. Moreover, the research indicators and methods proposed herein extend valuable references for both domestic and international scholarly endeavors in related fields.

Suggested Citation

  • Lei Gao & Xiaoxue Liu & Hao Liu, 2025. "Spatiotemporal differentiation characteristics of flood risk based on spatial statistical analysis: a study of Jing–Jin–Ji region in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1711-1736, January.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06876-8
    DOI: 10.1007/s11069-024-06876-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06876-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06876-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    2. Campos, R.M. & Guedes Soares, C., 2018. "Spatial distribution of offshore wind statistics on the coast of Portugal using Regional Frequency Analysis," Renewable Energy, Elsevier, vol. 123(C), pages 806-816.
    3. Yang, Yueting & Li, Kaiwei & Wei, Sicheng & Guga, Suri & Zhang, Jiquan & Wang, Chunyi, 2022. "Spatial-temporal distribution characteristics and hazard assessment of millet drought disaster in Northern China under climate change," Agricultural Water Management, Elsevier, vol. 272(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
    2. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    3. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    4. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    5. Guga, Suri & Ma, Yining & Riao, Dao & Zhi, Feng & Xu, Jie & Zhang, Jiquan, 2023. "Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Joanna Wicher-Dysarz & Tomasz Dysarz & Joanna Jaskuła, 2022. "Uncertainty in Determination of Meteorological Drought Zones Based on Standardized Precipitation Index in the Territory of Poland," IJERPH, MDPI, vol. 19(23), pages 1-18, November.
    7. Veronika Římalová & Alessandra Menafoglio & Alessia Pini & Vilém Pechanec & Eva Fišerová, 2020. "A permutation approach to the analysis of spatiotemporal geochemical data in the presence of heteroscedasticity," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    8. Díaz, H. & Guedes Soares, C., 2022. "A novel multi-criteria decision-making model to evaluate floating wind farm locations," Renewable Energy, Elsevier, vol. 185(C), pages 431-454.
    9. Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
    10. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    11. Lovato, Ilenia & Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2020. "Model-free two-sample test for network-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Antonio Balzanella & Antonio Irpino, 2020. "Spatial prediction and spatial dependence monitoring on georeferenced data streams," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 101-128, March.
    13. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    14. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Abramowicz, Konrad & Sjöstedt de Luna, Sara & Strandberg, Johan, 2023. "Nonparametric bagging clustering methods to identify latent structures from a sequence of dependent categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    16. Chenle Xue & Dan Qiao & Noshaba Aziz, 2022. "Influence of Natural Disaster Shock and Collective Action on Farmland Transferees’ No-Tillage Technology Adoption in China," Land, MDPI, vol. 11(9), pages 1-23, September.
    17. He, Junyi & Chan, P.W. & Li, Qiusheng & Lee, C.W., 2020. "Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong," Energy, Elsevier, vol. 201(C).
    18. Římalová, Veronika & Fišerová, Eva & Menafoglio, Alessandra & Pini, Alessia, 2022. "Inference for spatial regression models with functional response using a permutational approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Zhou, Shiwei & Ye, Fan & Xia, Dufei & Liu, Zijin & Wu, Yangzhong & Chen, Fu, 2023. "Climate change impacts assessment and developing adaptation strategies for rainfed foxtail millet in northern Shanxi, China," Agricultural Water Management, Elsevier, vol. 290(C).
    20. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06876-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.