IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6139-d1537665.html
   My bibliography  Save this article

Mutual Influences Among the Electricity Market, Carbon Emission Market, and Renewable Energy Certificate Market

Author

Listed:
  • Hongbo Zou

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
    Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station, China Three Gorges University, Yichang 443002, China)

  • Yuhong Luo

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Fushuan Wen

    (Hainan Institute, Zhejiang University, Sanya 572025, China)

  • Jiehao Chen

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Jinlong Yang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Changhua Yang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

Abstract

With the advancement and development of the electricity market (EM), carbon emission market (CEM), and renewable energy certificate market (RECM), promoting the integration and growth of the EM alongside carbon emission trading, renewable energy certificate trading, and other related markets is becoming increasingly important for high-quality development of the power industry. Analyzing the intrinsic connections among these three types of markets can facilitate their coordinated development. In this study, we selected monthly data on European Union (EU) carbon emission futures, French electricity trading prices, and the price of Guarantees of Origin (GO) in France from March 2019 to March 2024 and utilized the Bayesian time-varying stochastic volatility vector autoregression model (TVP-SV-VAR) with time-varying parameters to effectively capture the dynamic changes among the three markets and to analyze the relationships and characteristics of the EM, CEM, and RECM across different historical contexts. Simulation results showed that the influences of the EM and CEM on the RECM were relatively low, with more pronounced short-term effects and relatively stable medium- and long-term effects. In contrast, the influences of the CEM and RECM on the EM were significant, with more pronounced short-term effects and stable medium- and long-term effects. The influences of the EM and RECM on the CEM were significant in the short term.

Suggested Citation

  • Hongbo Zou & Yuhong Luo & Fushuan Wen & Jiehao Chen & Jinlong Yang & Changhua Yang, 2024. "Mutual Influences Among the Electricity Market, Carbon Emission Market, and Renewable Energy Certificate Market," Energies, MDPI, vol. 17(23), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6139-:d:1537665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    2. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).
    3. Schusser, Sandra & Jaraitė, Jūratė, 2018. "Explaining the interplay of three markets: Green certificates, carbon emissions and electricity," Energy Economics, Elsevier, vol. 71(C), pages 1-13.
    4. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "An equilibrium market power model for power markets and tradable green certificates, including Kirchhoff's Laws and Nash-Cournot competition," Energy Economics, Elsevier, vol. 70(C), pages 270-288.
    5. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    6. Shahnazari, Mahdi & McHugh, Adam & Maybee, Bryan & Whale, Jonathan, 2017. "Overlapping carbon pricing and renewable support schemes under political uncertainty: Global lessons from an Australian case study," Applied Energy, Elsevier, vol. 200(C), pages 237-248.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Zhao, Yi, 2022. "Research on a cross-regional robust trading strategy based on multiple market mechanisms," Energy, Elsevier, vol. 261(PB).
    2. Hu, Yu & Chi, Yuanying & Zhou, Wenbing & Li, Jialin & Wang, Zhengzao & Yuan, Yongke, 2023. "The interactions between renewable portfolio standards and carbon emission trading in China: An evolutionary game theory perspective," Energy, Elsevier, vol. 271(C).
    3. Li, Jialin & Hu, Yu & Chi, Yuanying & Liu, Dunnan & Yang, Shuxia & Gao, Zhiyuan & Chen, Yuetong, 2024. "Analysis on the synergy between markets of electricity, carbon, and tradable green certificates in China," Energy, Elsevier, vol. 302(C).
    4. Marco Quatrosi, 2024. "Emission trading in a high dimensional context: to what extent are carbon markets integrated with the broader system?," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 41(3), pages 793-814, October.
    5. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    6. Jiang, Pansong & Zha, Donglan & Yang, Guanglei & Xia, Dan, 2024. "Which decarbonization policy mixes are better for China's power sector? A simulation balancing aggregate abatement effects and economic impacts," Energy Economics, Elsevier, vol. 139(C).
    7. Hu, Bo & Zhou, P., 2022. "Can the renewable power consumption guarantee mechanism help activate China's power trading market?," Energy, Elsevier, vol. 253(C).
    8. Wenhui Zhao & Xiongjiantao Bao & Guanghui Yuan & Xiaomei Wang & Hongbo Bao, 2019. "The Equilibrium Model for the Coexistence of Renewable Portfolio Standards and Emissions Trading: The Supply Chain Analysis," Energies, MDPI, vol. 12(3), pages 1-29, January.
    9. Liu, Feng & Lv, Tao & Meng, Yuan & Li, Cong & Hou, Xiaoran & Xu, Jie & Deng, Xu, 2023. "Potential analysis of BESS and CCUS in the context of China's carbon trading scheme toward the low-carbon electricity system," Renewable Energy, Elsevier, vol. 210(C), pages 462-471.
    10. Yan Lu & Xuan Liu & Hongjian Li & Haoran Wang & Jiajie Kong & Cheng Zhong & Mingli Cui & Yan Li & Xiaoqi Sun & Jiadong Xuan & Tiantian Feng, 2023. "What Is the Impact of the Renewable Energy Power Absorption Guarantee Mechanism on China’s Green Electricity Market?," Energies, MDPI, vol. 16(21), pages 1-20, November.
    11. Wang, Ge & Zhang, Qi & Su, Bin & Shen, Bo & Li, Yan & Li, Zhengjun, 2021. "Coordination of tradable carbon emission permits market and renewable electricity certificates market in China," Energy Economics, Elsevier, vol. 93(C).
    12. Zhang, Yanfang & Gao, Qi & Li, Hao & Shi, Xunpeng & Zhou, Dequn, 2024. "Navigating the energy transition with the Carbon-Energy-Green-Electricity scheme: An industrial chain-based approach for China's carbon neutrality," Energy Economics, Elsevier, vol. 140(C).
    13. Bolat, C. Kaan & Soytas, Ugur & Akinoglu, Bulent & Nazlioglu, Saban, 2023. "Is there a macroeconomic carbon rebound effect in EU ETS?," Energy Economics, Elsevier, vol. 125(C).
    14. Lei, Xu & Xin-gang, Zhao, 2023. "The synergistic effect between Renewable Portfolio Standards and carbon emission trading system: A perspective of China," Renewable Energy, Elsevier, vol. 211(C), pages 1010-1023.
    15. Song, Xiao-hua & Han, Jing-jing & Zhang, Lu & Zhao, Cai-ping & Wang, Peng & Liu, Xiao-yan & Li, Qiao-chu, 2021. "Impacts of renewable portfolio standards on multi-market coupling trading of renewable energy in China: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 159(C).
    16. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    17. Bao, Xiongjiantao & Zhao, Wenhui & Wang, Xiaomei & Tan, Zhongfu, 2019. "Impact of policy mix concerning renewable portfolio standards and emissions trading on electricity market," Renewable Energy, Elsevier, vol. 135(C), pages 761-774.
    18. Ying Zhang & Yingli Huang, 2023. "Killing Two Birds with One Stone or Missing One of Them? The Synergistic Governance Effect of China’s Carbon Emissions Trading Scheme on Pollution Control and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    19. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    20. Yan Li & Yigang Wei & Hanxiao Xu & Huanwen Liu & Julien Chevallier, 2023. "Carbon monoxide and multi‐pollutants flow between China and India: A multiregional input–output model," The World Economy, Wiley Blackwell, vol. 46(8), pages 2514-2537, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6139-:d:1537665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.