IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2735-d1097897.html
   My bibliography  Save this article

Statistical Analysis of Electric Vehicle Charging Based on AC Slow Chargers

Author

Listed:
  • Dong Sik Kim

    (Deparment of Electronics Engineering, Hankuk University of Foreign Studies, Yongin-si 17035, Republic of Korea)

  • Young Mo Chung

    (Department of Electronics and Information Engineering, Hansung University, Seoul 02876, Republic of Korea)

  • Beom Jin Chung

    (Research Center for Electrical and Information Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea)

Abstract

Regarding DC fast chargers, various studies, such as the charge scheduling, have been conducted. On the other hand, research on AC slow chargers has rarely been conducted due to the predictable and simple usage pattern. Despite the long charging times of AC slow chargers, which use the existing electric outlets with relatively low supplied power, these chargers are suitable for daily home charging of electric vehicles (EVs) during the night. Due to their low installation costs, they are likely to be the dominant type of charging equipment. In this paper, the EV charging process based on AC slow chargers, which supply a maximum power of 3 kW from an AC 220 V outlet, is analyzed by constructing a simple charging model. The charging time and fees are statistically derived and investigated. Furthermore, power load curves for charging EVs with the 3 kW charger are observed. From the statistical analyses, we conclude that daily charging of EVs can be an appropriate scenario in using the AC slow chargers, and the power load can be spread without employing any demand response schemes.

Suggested Citation

  • Dong Sik Kim & Young Mo Chung & Beom Jin Chung, 2023. "Statistical Analysis of Electric Vehicle Charging Based on AC Slow Chargers," Energies, MDPI, vol. 16(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2735-:d:1097897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nanaki, Evanthia A. & Koroneos, Christopher J., 2016. "Climate change mitigation and deployment of electric vehicles in urban areas," Renewable Energy, Elsevier, vol. 99(C), pages 1153-1160.
    2. Edoardo Locorotondo & Fabio Corti & Luca Pugi & Lorenzo Berzi & Alberto Reatti & Giovanni Lutzemberger, 2021. "Design of a Wireless Charging System for Online Battery Spectroscopy," Energies, MDPI, vol. 14(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    2. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    3. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    4. Gail Helen Broadbent & Graciela Isabel Metternicht & Thomas Oliver Wiedmann, 2021. "Increasing Electric Vehicle Uptake by Updating Public Policies to Shift Attitudes and Perceptions: Case Study of New Zealand," Energies, MDPI, vol. 14(10), pages 1-20, May.
    5. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).
    6. Collaço, Flávia Mendes de Almeida & Dias, Luís Pereira & Simoes, Sofia G. & Pukšec, Tomislav & Seixas, Júlia & Bermann, Célio, 2019. "What if São Paulo (Brazil) would like to become a renewable and endogenous energy -based megacity?," Renewable Energy, Elsevier, vol. 138(C), pages 416-433.
    7. Loy-Benitez, Jorge & Safder, Usman & Nguyen, Hai-Tra & Li, Qian & Woo, TaeYong & Yoo, ChangKyoo, 2021. "Techno-economic assessment and smart management of an integrated fuel cell-based energy system with absorption chiller for power, hydrogen, heating, and cooling in an electrified railway network," Energy, Elsevier, vol. 233(C).
    8. Yuhua Zheng & Shiqi Li & Shuangshuang Xu, 2019. "Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-26, September.
    9. Alberto Broatch & Pablo Olmeda & Pau Bares & Sebastián Aceros, 2022. "Integral Thermal Management Studies in Winter Conditions with a Global Model of a Battery-Powered Electric Bus," Energies, MDPI, vol. 16(1), pages 1-24, December.
    10. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.
    11. Armenio, Sabrina & Bergantino, Angela Stefania & Intini, Mario & Morone, Andrea, 2022. "Cheaper or eco-friendly cars: What do consumers prefer? An experimental study on individual and social preferences," Ecological Economics, Elsevier, vol. 193(C).
    12. Budhavarapu, Jayaprakash & Thirumala, Karthik & Mohan, Vivek & Bu, Siqi & Sahoo, Manoranjan, 2022. "Tariff structure for regulation of reactive power and harmonics in prosumer-enabled low voltage distribution networks," Energy Economics, Elsevier, vol. 114(C).
    13. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Neves, Sónia Almeida & Marques, António Cardoso & Fuinhas, José Alberto, 2017. "Is energy consumption in the transport sector hampering both economic growth and the reduction of CO2 emissions? A disaggregated energy consumption analysis," Transport Policy, Elsevier, vol. 59(C), pages 64-70.
    15. Almeida Neves, Sónia & Cardoso Marques, António & Alberto Fuinhas, José, 2019. "Technological progress and other factors behind the adoption of electric vehicles: Empirical evidence for EU countries," Research in Transportation Economics, Elsevier, vol. 74(C), pages 28-39.
    16. Zeng, Bo & Feng, Jiahuan & Zhang, Jianhua & Liu, Zongqi, 2017. "An optimal integrated planning method for supporting growing penetration of electric vehicles in distribution systems," Energy, Elsevier, vol. 126(C), pages 273-284.
    17. Hill, Graeme & Heidrich, Oliver & Creutzig, Felix & Blythe, Phil, 2019. "The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Jonas Forsberg & Anna Krook-Riekkola, 2021. "Recoupling Climate Change and Air Quality: Exploring Low-Emission Options in Urban Transportation Using the TIMES-City Model," Energies, MDPI, vol. 14(11), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2735-:d:1097897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.