IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp416-433.html
   My bibliography  Save this article

What if São Paulo (Brazil) would like to become a renewable and endogenous energy -based megacity?

Author

Listed:
  • Collaço, Flávia Mendes de Almeida
  • Dias, Luís Pereira
  • Simoes, Sofia G.
  • Pukšec, Tomislav
  • Seixas, Júlia
  • Bermann, Célio

Abstract

This paper analyses São Paulo megacity’s (Brazil) current and future energy system through the development of an urban energy model, using the Long-range Energy Alternatives Planning System simulation software, covering the period from 2014 to 2030. The paper explores pathways for increasing renewable and endogenous energy resources in the megacity, reducing its dependency on energy imports and its greenhouse gases emissions. Seven scenarios are modelled considering an integrated multisector energy demand projection that combines energy endogenous potential assessment with improving access of the population to city’ energy services. Currently, São Paulo imports 99% of its energy (% of exogenous resources). In 2030, 31% of endogenous resources can be achieved under a Business as Usual scenario, as well as a reduction up to 43% of greenhouse gases emissions from 2014 levels, by promoting both demand-side and supply-side energy efficiency. When considering better energy services’ access for city inhabitants, accompanied by urban energy policies, a maximum of 25% of endogenous energy share in 2030 and an emission decrease of 24% below 2014 emissions is likely to be reached.

Suggested Citation

  • Collaço, Flávia Mendes de Almeida & Dias, Luís Pereira & Simoes, Sofia G. & Pukšec, Tomislav & Seixas, Júlia & Bermann, Célio, 2019. "What if São Paulo (Brazil) would like to become a renewable and endogenous energy -based megacity?," Renewable Energy, Elsevier, vol. 138(C), pages 416-433.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:416-433
    DOI: 10.1016/j.renene.2019.01.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300667
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    2. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    3. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2017. "Impact of service sector loads on renewable resource integration," Applied Energy, Elsevier, vol. 205(C), pages 1311-1326.
    4. Umberto Di Matteo & Benedetto Nastasi & Angelo Albo & Davide Astiaso Garcia, 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale," Energies, MDPI, Open Access Journal, vol. 10(2), pages 1-13, February.
    5. Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, Open Access Journal, vol. 4(12), pages 1-16, December.
    6. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    7. Rutter, Paul & Keirstead, James, 2012. "A brief history and the possible future of urban energy systems," Energy Policy, Elsevier, vol. 50(C), pages 72-80.
    8. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    9. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    10. Zheng, Xuyue & Qiu, Yuwei & Zhan, Xiangyan & Zhu, Xingyi & Keirstead, James & Shah, Nilay & Zhao, Yingru, 2017. "Optimization based planning of urban energy systems: Retrofitting a Chinese industrial park as a case-study," Energy, Elsevier, vol. 139(C), pages 31-41.
    11. Phdungsilp, Aumnad, 2010. "Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok," Energy Policy, Elsevier, vol. 38(9), pages 4808-4817, September.
    12. Ripa, M. & Fiorentino, G. & Giani, H. & Clausen, A. & Ulgiati, S., 2017. "Refuse recovered biomass fuel from municipal solid waste. A life cycle assessment," Applied Energy, Elsevier, vol. 186(P2), pages 211-225.
    13. Nanaki, Evanthia A. & Koroneos, Christopher J., 2016. "Climate change mitigation and deployment of electric vehicles in urban areas," Renewable Energy, Elsevier, vol. 99(C), pages 1153-1160.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:416-433. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.