IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp416-433.html
   My bibliography  Save this article

What if São Paulo (Brazil) would like to become a renewable and endogenous energy -based megacity?

Author

Listed:
  • Collaço, Flávia Mendes de Almeida
  • Dias, Luís Pereira
  • Simoes, Sofia G.
  • Pukšec, Tomislav
  • Seixas, Júlia
  • Bermann, Célio

Abstract

This paper analyses São Paulo megacity’s (Brazil) current and future energy system through the development of an urban energy model, using the Long-range Energy Alternatives Planning System simulation software, covering the period from 2014 to 2030. The paper explores pathways for increasing renewable and endogenous energy resources in the megacity, reducing its dependency on energy imports and its greenhouse gases emissions. Seven scenarios are modelled considering an integrated multisector energy demand projection that combines energy endogenous potential assessment with improving access of the population to city’ energy services. Currently, São Paulo imports 99% of its energy (% of exogenous resources). In 2030, 31% of endogenous resources can be achieved under a Business as Usual scenario, as well as a reduction up to 43% of greenhouse gases emissions from 2014 levels, by promoting both demand-side and supply-side energy efficiency. When considering better energy services’ access for city inhabitants, accompanied by urban energy policies, a maximum of 25% of endogenous energy share in 2030 and an emission decrease of 24% below 2014 emissions is likely to be reached.

Suggested Citation

  • Collaço, Flávia Mendes de Almeida & Dias, Luís Pereira & Simoes, Sofia G. & Pukšec, Tomislav & Seixas, Júlia & Bermann, Célio, 2019. "What if São Paulo (Brazil) would like to become a renewable and endogenous energy -based megacity?," Renewable Energy, Elsevier, vol. 138(C), pages 416-433.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:416-433
    DOI: 10.1016/j.renene.2019.01.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    2. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    3. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2017. "Impact of service sector loads on renewable resource integration," Applied Energy, Elsevier, vol. 205(C), pages 1311-1326.
    4. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    5. Zheng, Xuyue & Qiu, Yuwei & Zhan, Xiangyan & Zhu, Xingyi & Keirstead, James & Shah, Nilay & Zhao, Yingru, 2017. "Optimization based planning of urban energy systems: Retrofitting a Chinese industrial park as a case-study," Energy, Elsevier, vol. 139(C), pages 31-41.
    6. Nanaki, Evanthia A. & Koroneos, Christopher J., 2016. "Climate change mitigation and deployment of electric vehicles in urban areas," Renewable Energy, Elsevier, vol. 99(C), pages 1153-1160.
    7. Umberto Di Matteo & Benedetto Nastasi & Angelo Albo & Davide Astiaso Garcia, 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale," Energies, MDPI, vol. 10(2), pages 1-13, February.
    8. Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, vol. 4(12), pages 1-16, December.
    9. Rutter, Paul & Keirstead, James, 2012. "A brief history and the possible future of urban energy systems," Energy Policy, Elsevier, vol. 50(C), pages 72-80.
    10. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    11. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    12. Phdungsilp, Aumnad, 2010. "Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok," Energy Policy, Elsevier, vol. 38(9), pages 4808-4817, September.
    13. Ripa, M. & Fiorentino, G. & Giani, H. & Clausen, A. & Ulgiati, S., 2017. "Refuse recovered biomass fuel from municipal solid waste. A life cycle assessment," Applied Energy, Elsevier, vol. 186(P2), pages 211-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    2. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2021. "Pathways to electric mobility integration in the Italian automotive sector," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    2. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    3. Feng, Tong & Lin, Zhongguo & Du, Huibin & Qiu, Yueming & Zuo, Jian, 2021. "Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities," Research in International Business and Finance, Elsevier, vol. 58(C).
    4. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    5. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    6. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    7. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi & Jingming Liu, 2017. "Decomposed Driving Factors of Carbon Emissions and Scenario Analyses of Low-Carbon Transformation in 2020 and 2030 for Zhejiang Province," Energies, MDPI, vol. 10(11), pages 1-16, October.
    9. Jonas Forsberg & Anna Krook-Riekkola, 2021. "Recoupling Climate Change and Air Quality: Exploring Low-Emission Options in Urban Transportation Using the TIMES-City Model," Energies, MDPI, vol. 14(11), pages 1-26, May.
    10. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    11. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    12. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    13. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    14. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    15. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    16. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    17. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    18. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    19. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    20. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:416-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.