IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2035-d1073156.html
   My bibliography  Save this article

Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management

Author

Listed:
  • Salma Hamad Almuhaini

    (Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

  • Nahid Sultana

    (Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

Abstract

This study aims to develop statistical and machine learning methodologies for forecasting yearly electricity consumption in Saudi Arabia. The novelty of this study include (i) determining significant features that have a considerable influence on electricity consumption, (ii) utilizing a Bayesian optimization algorithm (BOA) to enhance the model’s hyperparameters, (iii) hybridizing the BOA with the machine learning algorithms, viz., support vector regression (SVR) and nonlinear autoregressive networks with exogenous inputs (NARX), for modeling individually the long-term electricity consumption, (iv) comparing their performances with the widely used classical time-series algorithm autoregressive integrated moving average with exogenous inputs (ARIMAX) with regard to the accuracy, computational efficiency, and generalizability, and (v) forecasting future yearly electricity consumption and validation. The population, gross domestic product (GDP), imports, and refined oil products were observed to be significant with the total yearly electricity consumption in Saudi Arabia. The coefficient of determination R 2 values for all the developed models are >0.98, indicating an excellent fit of the models with historical data. However, among all three proposed models, the BOA–NARX has the best performance, improving the forecasting accuracy (root mean square error (RMSE)) by 71% and 80% compared to the ARIMAX and BOA–SVR models, respectively. The overall results of this study confirm the higher accuracy and reliability of the proposed methods in total electricity consumption forecasting that can be used by power system operators to more accurately forecast electricity consumption to ensure the sustainability of electric energy. This study can also provide significant guidance and helpful insights for researchers to enhance their understanding of crucial research, emerging trends, and new developments in future energy studies.

Suggested Citation

  • Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2035-:d:1073156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdel-Aal, R.E. & Al-Garni, A.Z. & Al-Nassar, Y.N., 1997. "Modelling and forecasting monthly electric energy consumption in eastern Saudi Arabia using abductive networks," Energy, Elsevier, vol. 22(9), pages 911-921.
    2. Mikayilov, Jeyhun I. & Darandary, Abdulelah & Alyamani, Ryan & Hasanov, Fakhri J. & Alatawi, Hatem, 2020. "Regional heterogeneous drivers of electricity demand in Saudi Arabia: Modeling regional residential electricity demand," Energy Policy, Elsevier, vol. 146(C).
    3. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    4. Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
    5. Felipe Leite Coelho da Silva & Kleyton da Costa & Paulo Canas Rodrigues & Rodrigo Salas & Javier Linkolk López-Gonzales, 2022. "Statistical and Artificial Neural Networks Models for Electricity Consumption Forecasting in the Brazilian Industrial Sector," Energies, MDPI, vol. 15(2), pages 1-12, January.
    6. Alarenan, Shahad & Gasim, Anwar A. & Hunt, Lester C., 2020. "Modelling industrial energy demand in Saudi Arabia," Energy Economics, Elsevier, vol. 85(C).
    7. Al-Garni, Ahmed Z. & Zubair, Syed M. & Nizami, Javeed S., 1994. "A regression model for electric-energy-consumption forecasting in Eastern Saudi Arabia," Energy, Elsevier, vol. 19(10), pages 1043-1049.
    8. Krarti, Moncef & Aldubyan, Mohammad & Williams, Eric, 2020. "Residential building stock model for evaluating energy retrofit programs in Saudi Arabia," Energy, Elsevier, vol. 195(C).
    9. Alsaedi, Yasir Hamad & Tularam, Gurudeo Anand, 2020. "The relationship between electricity consumption, peak load and GDP in Saudi Arabia: A VAR analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 164-178.
    10. Nabil Ahmed Mareai Senan & Haider Mahmood & Sehrish Liaquat, 2018. "Financial Markets and Electricity Consumption Nexus in Saudi Arabia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(1), pages 12-16.
    11. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    12. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    13. Marwa Salah EIDin Fahmy & Farhan Ahmed & Farah Durani & Štefan Bojnec & Mona Mohamed Ghareeb, 2023. "Predicting Electricity Consumption in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(1), pages 1-20, January.
    14. Jeyhun Mikayilov & Abdulelah Darandary & Ryan Alyamani & Fakhri Hasanov & Hatem Al Atawi, 2020. "Regional Heterogeneous Drivers of Electricity Demand in Saudi Arabia," Discussion Papers ks--2020-dp18, King Abdullah Petroleum Studies and Research Center.
    15. Sandra M. Guzman & Joel O. Paz & Mary Love M. Tagert, 2017. "The Use of NARX Neural Networks to Forecast Daily Groundwater Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1591-1603, March.
    16. Abdel-Aal, R.E. & Al-Garni, A.Z., 1997. "Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis," Energy, Elsevier, vol. 22(11), pages 1059-1069.
    17. Pruethsan Sutthichaimethee & Sthianrapab Naluang, 2019. "The Efficiency of the Sustainable Development Policy for Energy Consumption under Environmental Law in Thailand: Adapting the SEM-VARIMAX Model," Energies, MDPI, vol. 12(16), pages 1-21, August.
    18. Zina Boussaada & Octavian Curea & Ahmed Remaci & Haritza Camblong & Najiba Mrabet Bellaaj, 2018. "A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation," Energies, MDPI, vol. 11(3), pages 1-21, March.
    19. Mohannad Alkhraijah & Maad Alowaifeer & Mansour Alsaleh & Anas Alfaris & Daniel K. Molzahn, 2021. "The Effects of Social Distancing on Electricity Demand Considering Temperature Dependency," Energies, MDPI, vol. 14(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bibi Ibrahim & Luis Rabelo & Alfonso T. Sarmiento & Edgar Gutierrez-Franco, 2023. "A Holistic Approach to Power Systems Using Innovative Machine Learning and System Dynamics," Energies, MDPI, vol. 16(13), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Bayesian-Optimization-Based Long Short-Term Memory (LSTM) Super Learner Approach for Modeling Long-Term Electricity Consumption," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    2. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
    3. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    4. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    5. Gasim, Anwar A. & Agnolucci, Paolo & Ekins, Paul & De Lipsis, Vincenzo, 2023. "Modeling final energy demand and the impacts of energy price reform in Saudi Arabia," Energy Economics, Elsevier, vol. 120(C).
    6. Zhang, Ming & Mu, Hailin & Li, Gang & Ning, Yadong, 2009. "Forecasting the transport energy demand based on PLSR method in China," Energy, Elsevier, vol. 34(9), pages 1396-1400.
    7. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method," Energies, MDPI, vol. 16(18), pages 1-22, September.
    8. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
    10. Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
    11. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    12. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    13. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    14. SeyedAli Ghahari & Cesar Queiroz & Samuel Labi & Sue McNeil, 2021. "Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)—An Artificial Neural Network Analysis," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    15. Jumah Ahmad Alzyadat, 2022. "The Price and Income Elasticity of Demand for Natural Gas Consumption in Saudi Arabia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 357-363, November.
    16. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    17. Ejigu Tefera Habtemariam & Kula Kekeba & María Martínez-Ballesteros & Francisco Martínez-Álvarez, 2023. "A Bayesian Optimization-Based LSTM Model for Wind Power Forecasting in the Adama District, Ethiopia," Energies, MDPI, vol. 16(5), pages 1-22, February.
    18. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
    19. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    20. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2035-:d:1073156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.