IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p506-d1022934.html
   My bibliography  Save this article

Predicting Electricity Consumption in the Kingdom of Saudi Arabia

Author

Listed:
  • Marwa Salah EIDin Fahmy

    (Sadat Academy for Management Sciences, Cairo 2222, Egypt)

  • Farhan Ahmed

    (Department of Economics & Management Sciences, NED University of Engineering & Technology, Karachi 75270, Pakistan)

  • Farah Durani

    (College of Business Administration, University of Business and Technology, Jeddah 21361, Saudi Arabia)

  • Štefan Bojnec

    (Faculty of Management, University of Primorska, SI-6000 Koper-Capodistria, Slovenia)

  • Mona Mohamed Ghareeb

    (Faculty of High Asian Studies, Zagazig University, Zagazig 31527, Egypt)

Abstract

Forecasting energy consumption in Saudi Arabia for the period from 2020 until 2030 is investigated using a two-part composite model. The first part is the frontier, and the second part is the autoregressive integrated moving average (ARIMA) model that helps avoid the large disparity in predictions in previous studies, which is what this research seeks to achieve. The sample of the study has a size of 30 observations, which are the actual consumption values in the period from 1990 to 2019. The philosophy of this installation is to reuse the residuals to extract the remaining values. Therefore, it becomes white noise and the extracted values are added to increase prediction accuracy. The residuals were calculated and the ARIMA (0, 1, 0) model with a constant was developed both of the residual sum of squares and the root means square errors, which were compared in both cases. The results demonstrate that prediction accuracy using complex models is better than prediction accuracy using single polynomial models or randomly singular models by an increase in the accuracy of the estimated consumption and an improvement of 18.5% as a result of the synthesizing process, which estimates the value of electricity consumption in 2030 to be 575 TWh, compared to the results of previous studies, which were 365, 442, and 633 TWh.

Suggested Citation

  • Marwa Salah EIDin Fahmy & Farhan Ahmed & Farah Durani & Štefan Bojnec & Mona Mohamed Ghareeb, 2023. "Predicting Electricity Consumption in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:506-:d:1022934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madeline Hui Li Lee & Yee Chee Ser & Ganeshsree Selvachandran & Pham Huy Thong & Le Cuong & Le Hoang Son & Nguyen Trung Tuan & Vassilis C. Gerogiannis, 2022. "A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    2. Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
    3. Felipe Leite Coelho da Silva & Kleyton da Costa & Paulo Canas Rodrigues & Rodrigo Salas & Javier Linkolk López-Gonzales, 2022. "Statistical and Artificial Neural Networks Models for Electricity Consumption Forecasting in the Brazilian Industrial Sector," Energies, MDPI, vol. 15(2), pages 1-12, January.
    4. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    5. Shazia Kousar & Saeed Ahmad Sabir & Farhan Ahmed & Štefan Bojnec, 2022. "Climate Change, Exchange Rate, Twin Deficit, and Energy Inflation: Application of VAR Model," Energies, MDPI, vol. 15(20), pages 1-21, October.
    6. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    7. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    8. Vishal Dagar & Farhan Ahmed & Farah Waheed & Štefan Bojnec & Muhammad Kamran Khan & Sana Shaikh, 2022. "Testing the Pollution Haven Hypothesis with the Role of Foreign Direct Investments and Total Energy Consumption," Energies, MDPI, vol. 15(11), pages 1-23, May.
    9. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    10. Manuel Jaramillo & Diego Carrión, 2022. "An Adaptive Strategy for Medium-Term Electricity Consumption Forecasting for Highly Unpredictable Scenarios: Case Study Quito, Ecuador during the Two First Years of COVID-19," Energies, MDPI, vol. 15(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amjad Ali, 2023. "Transforming Saudi Arabia’s Energy Landscape towards a Sustainable Future: Progress of Solar Photovoltaic Energy Deployment," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    2. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Bayesian-Optimization-Based Long Short-Term Memory (LSTM) Super Learner Approach for Modeling Long-Term Electricity Consumption," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    3. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
    2. Gökay Yörük & Ugur Bac & Fatma Yerlikaya-Özkurt & Kamil Demirberk Ünlü, 2023. "Strategic Electricity Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    3. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    4. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    5. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    6. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    7. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    8. Mohammad Asif & Vishal Sharma & Vinay Joshi Chandniwala & Parvez Alam Khan & Syed Mohd Muneeb, 2023. "Modelling the Dynamic Linkage Amidst Energy Prices and Twin Deficit in India: Empirical Investigation within Linear and Nonlinear Framework," Energies, MDPI, vol. 16(6), pages 1-23, March.
    9. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    10. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    11. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    12. Zaher Abusaq & Sadaf Zahoor & Muhammad Salman Habib & Mudassar Rehman & Jawad Mahmood & Mohammad Kanan & Ray Tahir Mushtaq, 2023. "Improving Energy Performance in Flexographic Printing Process through Lean and AI Techniques: A Case Study," Energies, MDPI, vol. 16(4), pages 1-15, February.
    13. Yousaf Raza, Muhammad & Lin, Boqiang, 2021. "Oil for Pakistan: What are the main factors affecting the oil import?," Energy, Elsevier, vol. 237(C).
    14. Wang, Qiang & Li, Shuyu & Zhang, Min & Li, Rongrong, 2022. "Impact of COVID-19 pandemic on oil consumption in the United States: A new estimation approach," Energy, Elsevier, vol. 239(PC).
    15. Zhineng Hu & Jing Ma & Liangwei Yang & Liming Yao & Meng Pang, 2019. "Monthly electricity demand forecasting using empirical mode decomposition-based state space model," Energy & Environment, , vol. 30(7), pages 1236-1254, November.
    16. Aleksey I. Shinkevich & Irina G. Ershova & Farida F. Galimulina, 2022. "Forecasting the Efficiency of Innovative Industrial Systems Based on Neural Networks," Mathematics, MDPI, vol. 11(1), pages 1-25, December.
    17. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    18. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    19. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    20. Lili Wang & Lina Zhan & Rongrong Li, 2019. "Prediction of the Energy Demand Trend in Middle Africa—A Comparison of MGM, MECM, ARIMA and BP Models," Sustainability, MDPI, vol. 11(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:506-:d:1022934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.