IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13409-d1234959.html
   My bibliography  Save this article

Bayesian-Optimization-Based Long Short-Term Memory (LSTM) Super Learner Approach for Modeling Long-Term Electricity Consumption

Author

Listed:
  • Salma Hamad Almuhaini

    (Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Nahid Sultana

    (Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

Abstract

This study utilized different methods, namely classical multiple linear regression (MLR), statistical approach exponential smoothing (EXPS), and deep learning algorithm long short-term memory (LSTM) to forecast long-term electricity consumption in the Kingdom of Saudi Arabia. The originality of this research lies in (1) specifying exogenous variables that significantly affect electrical consumption; (2) utilizing the Bayesian optimization algorithm (BOA) to develop individual super learner BOA-LSTM models for forecasting the residential and total long-term electric energy consumption; (3) measuring forecasting performances of the proposed super learner models with classical and statistical models, viz. MLR and EXPS, by employing the broadly used evaluation measures regarding the computational efficiency, model accuracy, and generalizability; and finally (4) estimating forthcoming yearly electric energy consumption and validation. Population, gross domestic products, imports, and refined oil products significantly impact residential and total annual electricity consumption. The coefficient of determination ( R 2 ) for all the proposed models is greater than 0.93, representing an outstanding fitting of the models with historical data. Moreover, the developed BOA-LSTM models have the best performance with R 2 > 0.99 , enhancing the predicting accuracy (Mean Absolute Percentage Error (MAPE)) by 59.6% and 54.8% compared to the MLR and EXPS models, respectively, of total annual electricity consumption. This forecasting accuracy in residential electricity consumption for the BOA-LSTM model is improved by 62.7% and 68.9% compared to the MLR and EXPS models. This study achieved a higher accuracy and consistency of the proposed super learner model in long-term electricity forecasting, which can be utilized in energy strategy management to secure the sustainability of electric energy.

Suggested Citation

  • Salma Hamad Almuhaini & Nahid Sultana, 2023. "Bayesian-Optimization-Based Long Short-Term Memory (LSTM) Super Learner Approach for Modeling Long-Term Electricity Consumption," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13409-:d:1234959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Alarenan, Shahad & Gasim, Anwar A. & Hunt, Lester C., 2020. "Modelling industrial energy demand in Saudi Arabia," Energy Economics, Elsevier, vol. 85(C).
    3. Alsaedi, Yasir Hamad & Tularam, Gurudeo Anand, 2020. "The relationship between electricity consumption, peak load and GDP in Saudi Arabia: A VAR analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 164-178.
    4. Nabil Ahmed Mareai Senan & Haider Mahmood & Sehrish Liaquat, 2018. "Financial Markets and Electricity Consumption Nexus in Saudi Arabia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(1), pages 12-16.
    5. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    6. Marwa Salah EIDin Fahmy & Farhan Ahmed & Farah Durani & Štefan Bojnec & Mona Mohamed Ghareeb, 2023. "Predicting Electricity Consumption in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(1), pages 1-20, January.
    7. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    8. Mikayilov, Jeyhun I. & Darandary, Abdulelah & Alyamani, Ryan & Hasanov, Fakhri J. & Alatawi, Hatem, 2020. "Regional heterogeneous drivers of electricity demand in Saudi Arabia: Modeling regional residential electricity demand," Energy Policy, Elsevier, vol. 146(C).
    9. Mohammad Aldubyan & Moncef Krarti, 2022. "Impact of Stay Home Living on Energy Demand of Residential Buildings Case Study of Saudi Arabia," Discussion Papers ks--2022-dp02, King Abdullah Petroleum Studies and Research Center.
    10. Kaboli, S. Hr. Aghay & Selvaraj, J. & Rahim, N.A., 2016. "Long-term electric energy consumption forecasting via artificial cooperative search algorithm," Energy, Elsevier, vol. 115(P1), pages 857-871.
    11. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    12. Al-Garni, Ahmed Z. & Zubair, Syed M. & Nizami, Javeed S., 1994. "A regression model for electric-energy-consumption forecasting in Eastern Saudi Arabia," Energy, Elsevier, vol. 19(10), pages 1043-1049.
    13. Krarti, Moncef & Aldubyan, Mohammad & Williams, Eric, 2020. "Residential building stock model for evaluating energy retrofit programs in Saudi Arabia," Energy, Elsevier, vol. 195(C).
    14. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    15. Pruethsan Sutthichaimethee & Sthianrapab Naluang, 2019. "The Efficiency of the Sustainable Development Policy for Energy Consumption under Environmental Law in Thailand: Adapting the SEM-VARIMAX Model," Energies, MDPI, vol. 12(16), pages 1-21, August.
    16. Mohannad Alkhraijah & Maad Alowaifeer & Mansour Alsaleh & Anas Alfaris & Daniel K. Molzahn, 2021. "The Effects of Social Distancing on Electricity Demand Considering Temperature Dependency," Energies, MDPI, vol. 14(2), pages 1-14, January.
    17. Salaheddine Soummane & F. Ghersi, 2022. "Projecting Saudi sectoral electricity demand in 2030 using a computable general equilibrium model," Post-Print hal-03500916, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
    2. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    3. Mahmood, Haider & Alkhateeb, Tarek Tawfik Yousef & Al-Qahtani, Maleeha Mohammed Zaaf & Allam, Zafrul Allam & Ahmad, Nawaz & Furqan, Maham, 2019. "Energy consumption, economic growth and pollution in Saudi Arabia," MPRA Paper 109143, University Library of Munich, Germany.
    4. Jawed Mustafa & Fahad Awjah Almehmadi & Saeed Alqaed & Mohsen Sharifpur, 2022. "Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    5. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    6. Jumah Ahmad Alzyadat, 2022. "The Price and Income Elasticity of Demand for Natural Gas Consumption in Saudi Arabia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 357-363, November.
    7. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    8. Gasim, Anwar A. & Agnolucci, Paolo & Ekins, Paul & De Lipsis, Vincenzo, 2023. "Modeling final energy demand and the impacts of energy price reform in Saudi Arabia," Energy Economics, Elsevier, vol. 120(C).
    9. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    10. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
    11. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    12. Ioana Ancuta Iancu & Patrick Hendrick & Dan Doru Micu & Adrian Cote, 2023. "Pandemic-Induced Shifts in Climate Change Perception and Energy Consumption Behaviors: A Cross-Country Analysis of Belgium, Italy, Romania, and Sweden," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    13. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    14. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    15. Qiu, Lei & Wang, Xiaoyang & Wei, Jia, 2023. "Energy security and energy management: The role of extreme natural events," Innovation and Green Development, Elsevier, vol. 2(2).
    16. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    17. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    18. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    19. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    20. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13409-:d:1234959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.