IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7215-d1265692.html
   My bibliography  Save this article

A Novel Hybrid Power-Grid Investment Optimization Model with Collaborative Consideration of Risk and Benefit

Author

Listed:
  • Changzheng Gao

    (CEC Technical & Economic Consulting Center of Power Construction, Electric Power Development Research Institute Co., Ltd., Beijing 100053, China)

  • Xiuna Wang

    (CEC Technical & Economic Consulting Center of Power Construction, Electric Power Development Research Institute Co., Ltd., Beijing 100053, China)

  • Dongwei Li

    (CEC Technical & Economic Consulting Center of Power Construction, Electric Power Development Research Institute Co., Ltd., Beijing 100053, China)

  • Chao Han

    (CEC Technical & Economic Consulting Center of Power Construction, Electric Power Development Research Institute Co., Ltd., Beijing 100053, China)

  • Weiyang You

    (CEC Technical & Economic Consulting Center of Power Construction, Electric Power Development Research Institute Co., Ltd., Beijing 100053, China)

  • Yihang Zhao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Power-grid investment (PGI) optimization is crucial for boosting investment performance, lowering investment risks, and assuring the sustainable development of power-grid businesses. However, existing studies, which primarily concentrate on financial aspects, have not adequately considered the risk and benefit factors in the process of PGI. In this context, this research suggests a novel hybrid PGI optimization model that collaboratively accounts for the risks and benefits. In the first step, risk and benefit indicator systems for PGI are built, and a comprehensive evaluation model based on the Bayesian best–worst method and TOPSIS is suggested. In the second stage, a PGI optimization model considering the investment amount, power demand, and low-carbon restrictions is further developed based on the evaluation results. Furthermore, the incomprehensible but intelligible-in-time logic algorithm is adopted to solve the problem. By conducting an empirical analysis of ten projects within a power-grid company, the optimal investment plan and a differentiated investment portfolio strategy are obtained by adjusting the key elements.

Suggested Citation

  • Changzheng Gao & Xiuna Wang & Dongwei Li & Chao Han & Weiyang You & Yihang Zhao, 2023. "A Novel Hybrid Power-Grid Investment Optimization Model with Collaborative Consideration of Risk and Benefit," Energies, MDPI, vol. 16(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7215-:d:1265692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
    2. Zhang, Yuanyuan & Zhao, Huiru & Li, Bingkang & Zhao, Yihang & Qi, Ze, 2022. "Research on credit rating and risk measurement of electricity retailers based on Bayesian Best Worst Method-Cloud Model and improved Credit Metrics model in China's power market," Energy, Elsevier, vol. 252(C).
    3. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    4. Chenpei Hu & Zuiyi Shen & Haijing Yu & Bing Xu, 2022. "Uncertainty shocks and monetary policy: evidence from the troika of China's economy," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 971-985, December.
    5. Zhuola Zhang & Shiyuan Lin & Yingjin Ye & Zhao Xu & Yihang Zhao & Huiru Zhao & Jingqi Sun, 2022. "A Hybrid MCDM Model for Evaluating the Market-Oriented Business Regulatory Risk of Power Grid Enterprises Based on the Bayesian Best-Worst Method and MARCOS Approach," Energies, MDPI, vol. 15(9), pages 1-17, April.
    6. Shailesh S. Kulkarni & David Francas, 2018. "Capacity investment and the value of operational flexibility in manufacturing systems with product blending," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3563-3589, May.
    7. Yana Duan & Yang Sun & Yu Zhang & Xiaoqi Fan & Qinghuan Dong & Sen Guo, 2021. "Risk Evaluation of Electric Power Grid Investment in China Employing a Hybrid Novel MCDM Method," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    8. Cunico, Maria Laura & Flores, Julio Rolando & Vecchietti, Aldo, 2017. "Investment in the energy sector: An optimization model that contemplates several uncertain parameters," Energy, Elsevier, vol. 138(C), pages 831-845.
    9. Xie, Y.L. & Xia, D.H. & Ji, L. & Zhou, W.N. & Huang, G.H., 2017. "An inexact cost-risk balanced model for regional energy structure adjustment management and resources environmental effect analysis-a case study of Shandong province, China," Energy, Elsevier, vol. 126(C), pages 374-391.
    10. Wang, Yongli & Zhou, Minhan & Zhang, Fuli & Zhang, Yuli & Ma, Yuze & Dong, Huanran & Zhang, Danyang & Liu, Lin, 2021. "Chinese grid investment based on transmission and distribution tariff policy: An optimal coordination between capacity and demand," Energy, Elsevier, vol. 219(C).
    11. Davidov, Sreten & Pantoš, Miloš, 2017. "Stochastic assessment of investment efficiency in a power system," Energy, Elsevier, vol. 119(C), pages 1047-1056.
    12. Burgholzer, Bettina & Auer, Hans, 2016. "Cost/benefit analysis of transmission grid expansion to enable further integration of renewable electricity generation in Austria," Renewable Energy, Elsevier, vol. 97(C), pages 189-196.
    13. Mohammadi, Majid & Rezaei, Jafar, 2020. "Bayesian best-worst method: A probabilistic group decision making model," Omega, Elsevier, vol. 96(C).
    14. Wu, Qun & Liu, Xinwang & Qin, Jindong & Zhou, Ligang & Mardani, Abbas & Deveci, Muhammet, 2022. "An integrated multi-criteria decision-making and multi-objective optimization model for socially responsible portfolio selection," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    2. Weijie Wu & Dongwei Li & Hui Sun & Yixin Li & Yining Zhang & Mingrui Zhao, 2024. "Building a Sustainable Future: A Three-Stage Risk Management Model for High-Permeability Power Grid Engineering," Energies, MDPI, vol. 17(14), pages 1-23, July.
    3. Corrente, Salvatore & Greco, Salvatore & Rezaei, Jafar, 2024. "Better decisions with less cognitive load: The Parsimonious BWM," Omega, Elsevier, vol. 126(C).
    4. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    5. Yang, Hua & Xu, Yong & Zhou, Kan & Li, Jiuyi, 2024. "Mapping development potential and priority zones for utility-scale photovoltaic on the Qinghai-Tibet Plateau," Renewable Energy, Elsevier, vol. 237(PA).
    6. Himanshu Gupta & Manjeet Kharub & Kumar Shreshth & Ashwani Kumar & Donald Huisingh & Anil Kumar, 2023. "Evaluation of strategies to manage risks in smart, sustainable agri‐logistics sector: A Bayesian‐based group decision‐making approach," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4335-4359, November.
    7. Lin, Xueshan & Huang, Tao & Bompard, Ettore & Wang, Beibei & Zheng, Yaxian, 2023. "Ex-ante market power evaluation and mitigation in day-ahead electricity market considering market maturity levels," Energy, Elsevier, vol. 278(C).
    8. Göçmen Polat, Elifcan & Yücesan, Melih & Gül, Muhammet, 2023. "A comparative framework for criticality assessment of strategic raw materials in Turkey," Resources Policy, Elsevier, vol. 82(C).
    9. Vineet Kaushik & Shobha Tewari, 2023. "Modeling Opportunity Indicators Fostering Social Entrepreneurship: A Hybrid Delphi and Best-Worst Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 667-698, August.
    10. Jian Wang & Jin-Chun Huang & Shan-Lin Huang & Gwo-Hshiung Tzeng & Ting Zhu, 2021. "Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model," IJERPH, MDPI, vol. 18(9), pages 1-30, May.
    11. Mohammad Zahirul Khaiyum & Sudipa Sarker & Golam Kabir, 2023. "Evaluation of Carbon Emission Factors in the Cement Industry: An Emerging Economy Context," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    12. Wu, Qun & Liu, Xinwang & Zhou, Ligang & Qin, Jindong & Rezaei, Jafar, 2024. "An analytical framework for the best–worst method," Omega, Elsevier, vol. 123(C).
    13. Murad, C.A. & Bellinello, M.M. & Silva, A.J. & Netto, A. Caminada & de Souza, G.F.M. & Nabeta, S.I., 2022. "A novel methodology employed for ranking and consolidating performance indicators in holding companies with multiple power plants based on multi-criteria decision-making method," Operations Research Perspectives, Elsevier, vol. 9(C).
    14. Himanshu Gupta & Kumar Shreshth & Manjeet Kharub & Ashwani Kumar, 2024. "Strategies to overcome challenges to smart sustainable logistics: a Bayesian-based group decision-making approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11743-11770, May.
    15. Zeyu Lin & Hamdi Ayed & Belgacem Bouallegue & Hana Tomaskova & Saeid Jafarzadeh Ghoushchi & Gholamreza Haseli, 2021. "An Integrated Mathematical Attitude Utilizing Fully Fuzzy BWM and Fuzzy WASPAS for Risk Evaluation in a SOFC," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    16. Yana Duan & Yang Sun & Yu Zhang & Xiaoqi Fan & Qinghuan Dong & Sen Guo, 2021. "Risk Evaluation of Electric Power Grid Investment in China Employing a Hybrid Novel MCDM Method," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    17. Burak Can Altay & Abdullah Erdem Boztas & Abdullah Okumuş & Muhammet Gul & Erkan Çelik, 2023. "How Will Autonomous Vehicles Decide in Case of an Accident? An Interval Type-2 Fuzzy Best–Worst Method for Weighting the Criteria from Moral Values Point of View," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    18. Mario Cárdenas-Vélez & Julia Barrott & Juan Camilo Betancur Jaramillo & Efraim Hernández-Orozco & Daniela Maestre-Másmela & Ivonne Lobos-Alva, 2024. "A combined cognitive and spatial model to map and understand climate-induced migration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 6781-6807, March.
    19. Wu, Qun & Liu, Xinwang & Qin, Jindong & Zhou, Ligang & Mardani, Abbas & Deveci, Muhammet, 2022. "An integrated multi-criteria decision-making and multi-objective optimization model for socially responsible portfolio selection," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    20. Pierluigi Morano & Francesco Tajani & Felicia Di Liddo & Paola Amoruso, 2024. "A Feasibility Analysis of Energy Retrofit Initiatives Aimed at the Existing Property Assets Decarbonisation," Sustainability, MDPI, vol. 16(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7215-:d:1265692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.