IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3331-d807958.html
   My bibliography  Save this article

Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels

Author

Listed:
  • Phan Anh Duong

    (Department of Marine System Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

  • Borim Ryu

    (Department of Marine System Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

  • Chongmin Kim

    (System Safety Research Team, Korean Register, 36 Myeongji Ocean City 9-ro, Gangseo-gu, Busan 46762, Korea)

  • Jinuk Lee

    (Department of Marine System Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

  • Hokeun Kang

    (Division of Coast Guard Studies, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

Abstract

In this paper, a new integrated system of solid oxide fuel cell (SOFC)–gas turbine (GT)–steam Rankine cycle (SRC)–exhaust gas boiler (EGB) is presented, in which ammonia is introduced as a promising fuel source to meet shipping decarbonization targets. For this purpose, an SOFC is presented as the main power-generation source for a specific marine propulsion plant; the GT and SRC provide auxiliary power for machinery and accommodation lighting, and steam from the waste heat boiler is used for heating seafarer accommodation. The combined system minimizes waste heat and converts it into useful work and power. Energy and exergy analyses are performed based on the first and second laws of thermodynamics. A parametric study of the effects of the variation in the SOFC current density, fuel utilization factor, superheat temperature, and SRC evaporation pressure is conducted to define the optimal operating parameters for the proposed system. In the present study, the energy and exergy efficiencies of the integrated system are 64.49% and 61.10%, respectively. These results serve as strong motivation for employing an EGB and SRC for waste heat recovery and increasing the overall energy-conversion efficiency of the system. The SRC energy and exergy efficiencies are 25.58% and 41.21%, respectively.

Suggested Citation

  • Phan Anh Duong & Borim Ryu & Chongmin Kim & Jinuk Lee & Hokeun Kang, 2022. "Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels," Energies, MDPI, vol. 15(9), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3331-:d:807958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parikhani, Towhid & Azariyan, Hossein & Behrad, Reza & Ghaebi, Hadi & Jannatkhah, Javad, 2020. "Thermodynamic and thermoeconomic analysis of a novel ammonia-water mixture combined cooling, heating, and power (CCHP) cycle," Renewable Energy, Elsevier, vol. 145(C), pages 1158-1175.
    2. Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
    3. Linda Barelli & Gianni Bidini & Giovanni Cinti, 2020. "Operation of a Solid Oxide Fuel Cell Based Power System with Ammonia as a Fuel: Experimental Test and System Design," Energies, MDPI, vol. 13(23), pages 1-19, November.
    4. Hyunyong Lee & Inchul Jung & Gilltae Roh & Youngseung Na & Hokeun Kang, 2020. "Comparative Analysis of On-Board Methane and Methanol Reforming Systems Combined with HT-PEM Fuel Cell and CO 2 Capture/Liquefaction System for Hydrogen Fueled Ship Application," Energies, MDPI, vol. 13(1), pages 1-25, January.
    5. Ezzat, M.F. & Dincer, I., 2020. "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems," Energy, Elsevier, vol. 194(C).
    6. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    7. Ghorbani, Sh. & Khoshgoftar-Manesh, M.H. & Nourpour, M. & Blanco-Marigorta, A.M., 2020. "Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system," Energy, Elsevier, vol. 206(C).
    8. Song, Jian & Gu, Chun-wei, 2015. "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery," Applied Energy, Elsevier, vol. 156(C), pages 280-289.
    9. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phan Anh Duong & Borim Ryu & Jinwon Jung & Hokeun Kang, 2022. "Design, Modelling, and Thermodynamic Analysis of a Novel Marine Power System Based on Methanol Solid Oxide Fuel Cells, Integrated Proton Exchange Membrane Fuel Cells, and Combined Heat and Power Produ," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    2. Phan Anh Duong & Bo Rim Ryu & Mi Kyoung Song & Hong Van Nguyen & Dong Nam & Hokeun Kang, 2023. "Safety Assessment of the Ammonia Bunkering Process in the Maritime Sector: A Review," Energies, MDPI, vol. 16(10), pages 1-30, May.
    3. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Orlando Corigliano & Giuseppe De Lorenzo, 2023. "Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors," Energies, MDPI, vol. 16(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan Anh Duong & Borim Ryu & Jinwon Jung & Hokeun Kang, 2022. "Design, Modelling, and Thermodynamic Analysis of a Novel Marine Power System Based on Methanol Solid Oxide Fuel Cells, Integrated Proton Exchange Membrane Fuel Cells, and Combined Heat and Power Produ," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    2. Zhan Xu & Ning Zhao & Stuart Hillmansen & Clive Roberts & Yan Yan, 2022. "Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review," Energies, MDPI, vol. 15(17), pages 1-22, September.
    3. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
    4. Ouyang, Tiancheng & Zhang, Mingliang & Qin, Peijia & Liu, Wenjun & Shi, Xiaomin, 2022. "Converting waste into electric energy and carbon fixation through biosyngas-fueled SOFC hybrid system: A simulation study," Renewable Energy, Elsevier, vol. 193(C), pages 725-743.
    5. Jin, Xinfang & Ku, Anthony & Ohara, Brandon & Huang, Kevin & Singh, Surinder, 2021. "Performance analysis of a 550MWe solid oxide fuel cell and air turbine hybrid system powered by coal-derived syngas," Energy, Elsevier, vol. 222(C).
    6. Quach, Thai-Quyen & Giap, Van-Tien & Keun Lee, Dong & Pineda Israel, Torres & Young Ahn, Kook, 2022. "High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation," Applied Energy, Elsevier, vol. 324(C).
    7. Khoshgoftar Manesh, M.H. & Mehrabian, M.J. & Nourpour, M. & Onishi, V.C., 2023. "Risk and 4E analyses and optimization of a novel solar-natural gas-driven polygeneration system based on Integration of Gas Turbine–SCO2–ORC-solar PV-PEM electrolyzer," Energy, Elsevier, vol. 263(PD).
    8. Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.
    9. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    10. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    11. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    12. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    13. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    14. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    16. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    17. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    18. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    19. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    20. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3331-:d:807958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.