IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12496-d930645.html
   My bibliography  Save this article

Design, Modelling, and Thermodynamic Analysis of a Novel Marine Power System Based on Methanol Solid Oxide Fuel Cells, Integrated Proton Exchange Membrane Fuel Cells, and Combined Heat and Power Production

Author

Listed:
  • Phan Anh Duong

    (Department of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Borim Ryu

    (Department of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Jinwon Jung

    (Gas Technology Team, Busan Mieum Headquarters, Korea Marine Equipment Research Institute, Busan 49111, Korea)

  • Hokeun Kang

    (Division of Coast Guard Studies, Korea Maritime and Ocean University, Busan 49112, Korea)

Abstract

A novel maritime power system that uses methanol solid oxide fuel cells (SOFCs) to power marine vessels in an eco-friendly manner is proposed. The SOFCs, gas turbine (GT), steam Rankine cycle (SRC), proton exchange membrane fuel cells (PEMFCs), and organic Rankine cycle (ORC) were integrated together to generate useful energy and harvest wasted heat. The system supplies the exhaust heat from the SOFCs to the methanol dissociation unit for hydrogen production, whereas the heat exchangers and SRC recover the remaining waste heat to produce useful electricity. Mathematical models were established, and the thermodynamic efficiencies of the system were evaluated. The first and second laws of thermodynamics were used to construct the dynamic behavior of the system. Furthermore, the exergy destruction of all the subsystems was estimated. The thermodynamic performances of the main subsystem and entire system were evaluated to be 77.75% and 44.71% for the energy and exergy efficiencies, respectively. With a hydrogen distribution ratio of β = 0.12, the PEMFCs can generate 432.893 kW for the propulsion plant of the target vessel. This is also important for the rapid adaptation of the vessel’s needs for power generation, especially during start-up and maneuvering. A comprehensive parametric analysis was performed to examine the influence of changing current densities in the SOFCs, as well as the influence of the hydrogen distribution ratio and hydrogen storage ratio on the operational performance of the proposed systems. Increasing the hydrogen storage ratio (φ = 0–0.5) reduces the PEMFCs power output, but the energy efficiency and exergy efficiency of the PEMFC-ORC subsystem increased by 2.29% and 1.39%, respectively.

Suggested Citation

  • Phan Anh Duong & Borim Ryu & Jinwon Jung & Hokeun Kang, 2022. "Design, Modelling, and Thermodynamic Analysis of a Novel Marine Power System Based on Methanol Solid Oxide Fuel Cells, Integrated Proton Exchange Membrane Fuel Cells, and Combined Heat and Power Produ," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12496-:d:930645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sankar, K. & Thakre, Niraj & Singh, Sumit Mohan & Jana, Amiya K., 2017. "Sliding mode observer based nonlinear control of a PEMFC integrated with a methanol reformer," Energy, Elsevier, vol. 139(C), pages 1126-1143.
    2. Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
    3. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    4. Phan Anh Duong & Borim Ryu & Chongmin Kim & Jinuk Lee & Hokeun Kang, 2022. "Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels," Energies, MDPI, vol. 15(9), pages 1-22, May.
    5. Song, Jian & Gu, Chun-wei, 2015. "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery," Applied Energy, Elsevier, vol. 156(C), pages 280-289.
    6. Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
    7. Perng, Shiang-Wuu & Wu, Horng-Wen, 2022. "Influence of inlet-nozzle and outlet-diffuser mounted in the plate-shape reactor on PEMFC net power output and methanol steam reforming performance," Applied Energy, Elsevier, vol. 323(C).
    8. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan Anh Duong & Borim Ryu & Chongmin Kim & Jinuk Lee & Hokeun Kang, 2022. "Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels," Energies, MDPI, vol. 15(9), pages 1-22, May.
    2. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    3. Guillaume, Ludovic & Legros, Arnaud & Desideri, Adriano & Lemort, Vincent, 2017. "Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd," Applied Energy, Elsevier, vol. 186(P3), pages 408-422.
    4. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    5. Chen, Bin & Xu, Haoran & Tan, Peng & Zhang, Yuan & Xu, Xiaoming & Cai, Weizi & Chen, Meina & Ni, Meng, 2019. "Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells," Applied Energy, Elsevier, vol. 237(C), pages 476-486.
    6. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    7. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    9. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
    10. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    11. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    13. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
    14. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    15. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    16. Alshammari, Fuhaid & Pesyridis, Apostolos & Karvountzis-Kontakiotis, Apostolos & Franchetti, Ben & Pesmazoglou, Yagos, 2018. "Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance," Applied Energy, Elsevier, vol. 215(C), pages 543-555.
    17. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    18. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    19. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    20. Li, Jing & Li, Pengcheng & Gao, Guangtao & Pei, Gang & Su, Yuehong & Ji, Jie, 2017. "Thermodynamic and economic investigation of a screw expander-based direct steam generation solar cascade Rankine cycle system using water as thermal storage fluid," Applied Energy, Elsevier, vol. 195(C), pages 137-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12496-:d:930645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.