IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1877-d763498.html
   My bibliography  Save this article

Heating/Cooling Fresh Air Using Hot/Cold Exhaust Air of Heating, Ventilating, and Air Conditioning Systems

Author

Listed:
  • Mahmoud Khaled

    (Energy and Thermofluid Group, The International University of Beirut BIU, Beirut P.O. Box 146404, Lebanon
    Sorbonne Paris Cite, Interdisciplinary Energy Research Institute (PIERI), University Paris Diderot, 75205 Paris, France)

  • Samer Ali

    (Smart Systems and Energies Department, Junia HEI, 59000 Lille, France)

  • Hassan Jaber

    (Energy and Thermofluid Group, The International University of Beirut BIU, Beirut P.O. Box 146404, Lebanon)

  • Jalal Faraj

    (Energy and Thermofluid Group, The International University of Beirut BIU, Beirut P.O. Box 146404, Lebanon
    Faculty of Technology, Lebanese University, Saida P.O. Box 657314, Lebanon)

  • Rabih Murr

    (Energy and Thermofluid Group, Lebanese International University LIU, Bekaa P.O. Box 146404, Lebanon)

  • Thierry Lemenand

    (LARIS EA 7315, Polytech Angers, School of Engineering, University of Angers, 49000 Angers, France)

Abstract

This paper suggests a heat recovery concept that is based on preheating/precooling the cold/hot fresh outside air by means of the relatively hot/cold exhaust air in winter/summer weather conditions. To investigate the feasibility of such a concept, an experimental setup is established to simulate conditions similar to an All-Air HVAC system. The prototype consists of a 6.7-m 3 air-conditioned chamber by means of a split unit of 5.3-kW capacity. The heat recovery module consists of a duct system that is used to reroute the exhaust air from a conditioned chamber to flow through the fin side of a fin-and-tube heat exchanger of crossflow type. At the same time, outside, fresh air is flowing through the tube side of the fin-and-tube heat exchanger. A parametric study is performed to assess the amount of heat that can be recovered by varying the mass flow rates on both the duct and heat exchanger sides. The results show that up to 200 W of power can be saved for an exhaust flow rate of 0.1 kg/s and a fresh, outdoor air flow rate of 0.05 kg/s. Environmentally speaking, this leads to a reduction in production of about 1 tons of CO 2 per year when the system operates 24 h/day. From an economic point of view, the system is able to return its price after 1.5 years when it is used 24 h per day during hot days at 196-W thermal recovery, whereas it requires at least 6.3 years when it is used during cold days at a 60-W thermal recovery rate, which, in both cases, represents a duration less than the lifespan of an air conditioner.

Suggested Citation

  • Mahmoud Khaled & Samer Ali & Hassan Jaber & Jalal Faraj & Rabih Murr & Thierry Lemenand, 2022. "Heating/Cooling Fresh Air Using Hot/Cold Exhaust Air of Heating, Ventilating, and Air Conditioning Systems," Energies, MDPI, vol. 15(5), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1877-:d:763498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    2. Paul Christodoulides & Rafaela Agathokleous & Lazaros Aresti & Soteris A. Kalogirou & Savvas A. Tassou & Georgios A. Florides, 2022. "Waste Heat Recovery Technologies Revisited with Emphasis on New Solutions, Including Heat Pipes, and Case Studies," Energies, MDPI, vol. 15(1), pages 1-22, January.
    3. Pochwat, Kamil & Kordana, Sabina & Starzec, Mariusz & Słyś, Daniel, 2019. "Comparison of two-prototype near-horizontal Drain Water Heat Recovery units on the basis of effectiveness," Energy, Elsevier, vol. 173(C), pages 1196-1207.
    4. Felipe Arraño-Vargas & Zhiwei Shen & Shan Jiang & John Fletcher & Georgios Konstantinou, 2022. "Challenges and Mitigation Measures in Power Systems with High Share of Renewables—The Australian Experience," Energies, MDPI, vol. 15(2), pages 1-22, January.
    5. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.
    6. Salimzadeh, S. & Grandahl, M. & Medetbekova, M. & Nick, H.M., 2019. "A novel radial jet drilling stimulation technique for enhancing heat recovery from fractured geothermal reservoirs," Renewable Energy, Elsevier, vol. 139(C), pages 395-409.
    7. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    8. Piero Danieli & Massimo Masi & Andrea Lazzaretto & Gianluca Carraro & Gabriele Volpato, 2022. "A Smart Energy Recovery System to Avoid Preheating in Gas Grid Pressure Reduction Stations," Energies, MDPI, vol. 15(1), pages 1-31, January.
    9. Jaber, Hassan & Khaled, Mahmoud & Lemenand, Thierry & Murr, Rabih & Faraj, Jalal & Ramadan, Mohamad, 2019. "Domestic thermoelectric cogeneration drying system: Thermal modeling and case study," Energy, Elsevier, vol. 170(C), pages 1036-1050.
    10. Francesco Mancini & Fabio Nardecchia & Daniele Groppi & Francesco Ruperto & Carlo Romeo, 2020. "Indoor Environmental Quality Analysis for Optimizing Energy Consumptions Varying Air Ventilation Rates," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaber, Hassan & Khaled, Mahmoud & Lemenand, Thierry & Murr, Rabih & Faraj, Jalal & Ramadan, Mohamad, 2019. "Domestic thermoelectric cogeneration drying system: Thermal modeling and case study," Energy, Elsevier, vol. 170(C), pages 1036-1050.
    2. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    3. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    4. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    5. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    6. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    7. Sunil Indora & Tara C. Kandpal, 2020. "Solar energy for institutional cooking in India: prospects and potential," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7153-7175, December.
    8. Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
    9. Zhao, B.C. & Li, T.X. & Gao, J.C. & Wang, R.Z., 2020. "Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Matteo Baldelli & Lorenzo Bartolucci & Stefano Cordiner & Giorgio D’Andrea & Emanuele De Maina & Vincenzo Mulone, 2023. "Biomass to H2: Evaluation of the Impact of PV and TES Power Supply on the Performance of an Integrated Bio-Thermo-Chemical Upgrading Process for Wet Residual Biomass," Energies, MDPI, vol. 16(7), pages 1-17, March.
    11. Guan, Bowen & Zhang, Tao & Jun, Liu & Liu, Xiaohua, 2020. "Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study," Energy, Elsevier, vol. 196(C).
    12. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    13. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    14. Miriam Benedetti & Daniele Dadi & Lorena Giordano & Vito Introna & Pasquale Eduardo Lapenna & Annalisa Santolamazza, 2021. "Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    15. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    16. Paul Christodoulides & Lazaros Aresti & Gregoris P. Panayiotou & Savvas Tassou & Georgios A. Florides, 2022. "Adoption of Waste Heat Recovery Technologies: Reviewing the Relevant Barriers and Recommendations on How to Overcome Them," SN Operations Research Forum, Springer, vol. 3(1), pages 1-21, March.
    17. Shahsavar, Amin & Jahangiri, Ali & Qatarani nejad, Amir & Ahmadi, Gholamreza & Karamzadeh dizaji, Alireza, 2022. "Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations," Renewable Energy, Elsevier, vol. 196(C), pages 1017-1028.
    18. Wang, Xiu & Zhao, Liang & Zhang, Lihui & Zhang, Menghui & Dong, Hui, 2019. "A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 187(C).
    19. Seung Choi, Han & Hur, Sunghoon & Kumar, Ajeet & Song, Hyunseok & Min Baik, Jeong & Song, Hyun-Cheol & Ryu, Jungho, 2023. "Continuous pyroelectric energy generation with cyclic magnetic phase transition for low-grade thermal energy harvesting," Applied Energy, Elsevier, vol. 344(C).
    20. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1877-:d:763498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.