IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1764-d759937.html
   My bibliography  Save this article

Techno-Environmental Evaluation of a Liquefied Natural Gas-Fuelled Combined Gas Turbine with Steam Cycles for Large Container Ship Propulsion Systems

Author

Listed:
  • Abdulaziz M. T. Alzayedi

    (School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

  • Suresh Sampath

    (School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

  • Pericles Pilidis

    (School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

Abstract

Restrictions on emissions are being imposed by regional and international shipping organisations, which raise the question of which marine fuel and technology can most effectively replace heavy fuel oil and diesel engines. The aim of this study is to find appropriate advanced combined gas and steam turbine cycles for marine propulsion systems in a large container ship with respect to the evolving maritime environmental regulations. The selection criteria are the thermodynamic performance, emissions, size, and weight of advanced combined gas and steam turbine cycles in a large container ship. Two baselines are used: a diesel engine using marine diesel oil and a combined gas and steam turbine system using liquefied natural gas and marine diesel oil. Then, liquefied natural gas cycles are examined based on fuel replacement and enhanced to assess the benefits of liquefied natural gas over marine diesel oil. The results show that the enhanced liquefied natural gas combined gas and steam turbine cycles are the most efficient, at up to 1.6% higher than the other cycles. Regarding the size and weight, the combined gas and steam turbine propulsion system is approximately 24.7% lighter than the original diesel engine propulsion system.

Suggested Citation

  • Abdulaziz M. T. Alzayedi & Suresh Sampath & Pericles Pilidis, 2022. "Techno-Environmental Evaluation of a Liquefied Natural Gas-Fuelled Combined Gas Turbine with Steam Cycles for Large Container Ship Propulsion Systems," Energies, MDPI, vol. 15(5), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1764-:d:759937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Altosole & Giovanni Benvenuto & Ugo Campora & Michele Laviola & Alessandro Trucco, 2017. "Waste Heat Recovery from Marine Gas Turbines and Diesel Engines," Energies, MDPI, vol. 10(5), pages 1-24, May.
    2. Bengtsson, Selma & Fridell, Erik & Andersson, Karin, 2012. "Environmental assessment of two pathways towards the use of biofuels in shipping," Energy Policy, Elsevier, vol. 44(C), pages 451-463.
    3. Rivera-Alvarez, Alejandro & Coleman, Michael J. & Ordonez, Juan C., 2015. "Ship weight reduction and efficiency enhancement through combined power cycles," Energy, Elsevier, vol. 93(P1), pages 521-533.
    4. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    5. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    6. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    7. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    8. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Arif Budiyanto & Gerry Liston Putra & Achmad Riadi & Riezqa Andika & Sultan Alif Zidane & Andi Haris Muhammad & Gerasimos Theotokatos, 2024. "Techno-Economic Analysis of Combined Gas and Steam Propulsion System of Liquefied Natural Gas Carrier," Energies, MDPI, vol. 17(6), pages 1-17, March.
    2. Abdulaziz M. T. Alzayedi & Suresh Sampath & Pericles Pilidis, 2022. "Techno–Economic and Risk Evaluation of Combined Cycle Propulsion Systems in Large Container Ships," Energies, MDPI, vol. 15(14), pages 1-14, July.
    3. Abdulaziz M. T. Alzayedi & Amit Batra & Suresh Sampath & Pericles Pilidis, 2022. "Techno-Environmental Mission Evaluation of Combined Cycle Gas Turbines for Large Container Ship Propulsion," Energies, MDPI, vol. 15(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    3. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    4. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    5. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    6. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    7. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    8. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    9. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    10. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    11. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    12. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    13. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.
    14. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    15. Moyer, Jonathan D. & Hedden, Steve, 2020. "Are we on the right path to achieve the sustainable development goals?," World Development, Elsevier, vol. 127(C).
    16. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    17. Ansari, Dawud & Holz, Franziska & Al-Kuhlani, Hashem, 2020. "Energy Outlooks Compared: Global and Regional Insights," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 21-42.
    18. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    19. Spalding-Fecher, Randall. & Senatla, Mamahloko & Yamba, Francis & Lukwesa, Biness & Himunzowa, Grayson & Heaps, Charles & Chapman, Arthur & Mahumane, Gilberto & Tembo, Bernard & Nyambe, Imasiku, 2017. "Electricity supply and demand scenarios for the Southern African power pool," Energy Policy, Elsevier, vol. 101(C), pages 403-414.
    20. M. W. Straatsma & P. T. M. Vermeulen & M. J. M. Kuijper & M. Bonte & F. G. M. Niele & M. F. P. Bierkens, 2016. "Rapid Screening of Operational Freshwater Availability Using Global Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3013-3026, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1764-:d:759937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.