IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8263-d963990.html
   My bibliography  Save this article

Enhanced Dynamic Performance in Hybrid Power System Using a Designed ALTS-PFPNN Controller

Author

Listed:
  • Kai-Hung Lu

    (School of Electronic and Electrical Engineering, Minnan University of Science and Technology, Quanzhou 362700, China)

  • Chih-Ming Hong

    (Department of Electronic Communication Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan)

  • Fu-Sheng Cheng

    (Department of Electrical Engineering, Cheng-Shiu University, Kaohsiung 833301, Taiwan)

Abstract

The large-scale, nonlinear and uncertain factors of hybrid power systems (HPS) have always been difficult problems in dynamic stability control. This research mainly focuses on the dynamic and transient stability performance of large HPS under various operating conditions. In addition to the traditional synchronous power generator, wind-driven generator and ocean wave generator, the hybrid system also adds battery energy storage system and unified power flow controller (UPFC), making the system more diversified and more consistent with the current actual operation mode of the complex power grid. The purpose of this study is to propose an adaptive least squares Petri fuzzy probabilistic neural network (ALTS-PFPNN) for UPFC installed in the power grid to enhance the behavior of HPS operation. The proposed scheme improves the active power adjustment and dynamic performance of the integrated wave power generation and offshore wind system under a large range of operating conditions. Through various case studies, the practicability and robustness of ALTS-PFPNN method are verifying it by comparison and analysis with the damping controller based on the designed proportional integral differential (PID) and the control scheme without UPFC. Time-domain simulations were performed using Matlab-Simulink to validate the optimal damping behavior and efficiency of the suggested scheme under various disturbance conditions.

Suggested Citation

  • Kai-Hung Lu & Chih-Ming Hong & Fu-Sheng Cheng, 2022. "Enhanced Dynamic Performance in Hybrid Power System Using a Designed ALTS-PFPNN Controller," Energies, MDPI, vol. 15(21), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8263-:d:963990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Waqar Uddin & Nadia Zeb & Kamran Zeb & Muhammad Ishfaq & Imran Khan & Saif Ul Islam & Ayesha Tanoli & Aun Haider & Hee-Je Kim & Gwan-Soo Park, 2019. "A Neural Network-Based Model Reference Control Architecture for Oscillation Damping in Interconnected Power System," Energies, MDPI, vol. 12(19), pages 1-15, September.
    2. Faa-Jeng Lin & Yi-Hung Liao & Jyun-Ru Lin & Wei-Ting Lin, 2021. "Interior Permanent Magnet Synchronous Motor Drive System with Machine Learning-Based Maximum Torque per Ampere and Flux-Weakening Control," Energies, MDPI, vol. 14(2), pages 1-24, January.
    3. Lin, Chyou-Jong & Yu, Oliver S. & Chang, Chung-Liang & Liu, Yuin-Hong & Chuang, Yuh-Fa & Lin, Yu-Liang, 2009. "Challenges of wind farms connection to future power systems in Taiwan," Renewable Energy, Elsevier, vol. 34(8), pages 1926-1930.
    4. Milan Joshi & Gulshan Sharma & Pitshou N. Bokoro & Narayanan Krishnan, 2022. "A Fuzzy-PSO-PID with UPFC-RFB Solution for an LFC of an Interlinked Hydro Power System," Energies, MDPI, vol. 15(13), pages 1-17, July.
    5. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    6. Lu, Kai-Hung & Hong, Chih-Ming & Xu, Qiangqiang, 2019. "Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power generation systems," Energy, Elsevier, vol. 170(C), pages 40-52.
    7. Kuang-Hsiung Tan & Faa-Jeng Lin & Jun-Hao Chen, 2017. "A Three-Phase Four-Leg Inverter-Based Active Power Filter for Unbalanced Current Compensation Using a Petri Probabilistic Fuzzy Neural Network," Energies, MDPI, vol. 10(12), pages 1-21, December.
    8. Ping He & Seyed Ali Arefifar & Congshan Li & Fushuan Wen & Yuqi Ji & Yukun Tao, 2019. "Enhancing Oscillation Damping in an Interconnected Power System with Integrated Wind Farms Using Unified Power Flow Controller," Energies, MDPI, vol. 12(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaozhi Wang & Shemeng Wu & Kai-Hung Lu, 2022. "Improvement of Stability in an Oscillating Water Column Wave Energy Using an Adaptive Intelligent Controller," Energies, MDPI, vol. 16(1), pages 1-15, December.
    2. Naser Azim Mohseni & Navid Bayati, 2022. "Robust Multi-Objective H 2 /H ∞ Load Frequency Control of Multi-Area Interconnected Power Systems Using TS Fuzzy Modeling by Considering Delay and Uncertainty," Energies, MDPI, vol. 15(15), pages 1-18, July.
    3. Jiang, Jheng-Lun & Chang, Hong-Chan & Kuo, Cheng-Chien & Huang, Cheng-Kai, 2013. "Transient overvoltage phenomena on the control system of wind turbines due to lightning strike," Renewable Energy, Elsevier, vol. 57(C), pages 181-189.
    4. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    5. Federico Barrero & Jorge Rodas, 2021. "Control of Power Electronics Converters and Electric Motor Drives," Energies, MDPI, vol. 14(15), pages 1-2, July.
    6. Chuang, Ming-Tung & Chang, Shih-Yu & Hsiao, Ta-Chih & Lu, Yun-Ru & Yang, Tsung-Yeh, 2019. "Analyzing major renewable energy sources and power stability in Taiwan by 2030," Energy Policy, Elsevier, vol. 125(C), pages 293-306.
    7. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    8. Van-Hai Bui & Akhtar Hussain & Thai-Thanh Nguyen & Hak-Man Kim, 2021. "Multi-Objective Stochastic Optimization for Determining Set-Point of Wind Farm System," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    9. Meng Qi & Xin Dai & Bei Zhang & Junjie Li & Bangfan Liu, 2023. "The Evolution and Future Prospects of China’s Wave Energy Policy from the Perspective of Renewable Energy: Facing Problems, Governance Optimization and Effectiveness Logic," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    10. Mingcan Li & Hanbin Xiao & Lin Pan & Chengjun Xu, 2019. "Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms," Energies, MDPI, vol. 12(5), pages 1-32, March.
    11. Krzysztof Kołek & Andrzej Firlit, 2021. "A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker Conditions," Energies, MDPI, vol. 14(19), pages 1-17, October.
    12. Zhou, Dengji & Jia, Xingyun & Ma, Shixi & Shao, Tiemin & Huang, Dawen & Hao, Jiarui & Li, Taotao, 2022. "Dynamic simulation of natural gas pipeline network based on interpretable machine learning model," Energy, Elsevier, vol. 253(C).
    13. Xiaosheng Wang & Ke Dai & Xinwen Chen & Xin Zhang & Qi Wu & Ziwei Dai, 2019. "Reactive Power Compensation and Imbalance Suppression by Star-Connected Buck-Type D-CAP," Energies, MDPI, vol. 12(10), pages 1-16, May.
    14. He, Y.X. & Xia, T. & Liu, Z.Y. & Zhang, T. & Dong, Z., 2013. "Evaluation of the capability of accepting large-scale wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 509-516.
    15. Mohammad Alathamneh & Haneen Ghanayem & R. M. Nelms, 2022. "Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(24), pages 1-23, December.
    16. Xiaolu Chen & Ji Han & Tingting Zheng & Ping Zhang & Simo Duan & Shihong Miao, 2019. "A Vine-Copula Based Voltage State Assessment with Wind Power Integration," Energies, MDPI, vol. 12(10), pages 1-21, May.
    17. Rohan Zafar Butt & Syed Ali Abbas Kazmi & Mohammed Alghassab & Zafar A. Khan & Abdullah Altamimi & Muhammad Imran & Fahad F. Alruwaili, 2022. "Techno-Economic and Environmental Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 14(5), pages 1-31, February.
    18. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    19. Gao, Xiaoxia & Chen, Yao & Xu, Shinai & Gao, Wei & Zhu, Xiaoxun & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Lu, Hao, 2022. "Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements," Applied Energy, Elsevier, vol. 307(C).
    20. Valentine, Scott Victor, 2010. "A STEP toward understanding wind power development policy barriers in advanced economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2796-2807, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8263-:d:963990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.