IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2049-d531871.html
   My bibliography  Save this article

Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives

Author

Listed:
  • Yang Liu

    (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jin Zhao

    (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Quan Yin

    (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In this paper, a model-based predictive rotor field-oriented angle compensation approach is proposed for induction machine drives. Indirect rotor field-oriented control is widely used in induction machine drives for its simple implementation and low cost. However, the accuracy of the rotor field-oriented angle is affected by variable parameters such as the rotor resistance and inductance. An inaccurate rotor field-oriented angle leads to a degradation of the torque and dynamic performance, especially in the high-speed flux-weakening region. Therefore, the d-axis and q-axis currents in the rotation reference frame are predicted based on the model and compared with the feedback current to correct the rotor field-oriented angle. To improve the stability and robustness, the proposed predictive algorithm is based on the storage current, voltage, and velocity data. The algorithm can be easily realized in real-time. Finally, the simulated and experimental results verify the algorithm’s effectiveness on a 7.5 kW induction machine setup.

Suggested Citation

  • Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2049-:d:531871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Zhou & Min Ai & Dongyang Sun & Ningzhi Jin & Xiaogang Wu, 2019. "Field Weakening Operation Control Strategies of PMSM Based on Feedback Linearization," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Faa-Jeng Lin & Yi-Hung Liao & Jyun-Ru Lin & Wei-Ting Lin, 2021. "Interior Permanent Magnet Synchronous Motor Drive System with Machine Learning-Based Maximum Torque per Ampere and Flux-Weakening Control," Energies, MDPI, vol. 14(2), pages 1-24, January.
    3. Saleh A. Al-Jufout & Wasseem H. Al-rousan & Caisheng Wang, 2018. "Optimization of Induction Motor Equivalent Circuit Parameter Estimation Based on Manufacturer’s Data," Energies, MDPI, vol. 11(7), pages 1-13, July.
    4. Chunlei Wang & Dongxing Cao, 2020. "New Sensorless Speed Control of a Hybrid Stepper Motor Based on Fuzzy Sliding Mode Observer," Energies, MDPI, vol. 13(18), pages 1-19, September.
    5. Federico Barrero & Mario Bermudez & Mario J. Duran & Pedro Salas & Ignacio Gonzalez-Prieto, 2019. "Assessment of a Universal Reconfiguration-less Control Approach in Open-Phase Fault Operation for Multiphase Drives," Energies, MDPI, vol. 12(24), pages 1-12, December.
    6. GuangQing Bao & WuGang Qi & Ting He, 2020. "Direct Torque Control of PMSM with Modified Finite Set Model Predictive Control," Energies, MDPI, vol. 13(1), pages 1-16, January.
    7. Adile Akpunar & Serdar Iplikci, 2020. "Runge-Kutta Model Predictive Speed Control for Permanent Magnet Synchronous Motors," Energies, MDPI, vol. 13(5), pages 1-17, March.
    8. Danyang Bao & Huiming Wu & Ruiqi Wang & Fei Zhao & Xuewei Pan, 2020. "Full-Order Sliding Mode Observer Based on Synchronous Frequency Tracking Filter for High-Speed Interior PMSM Sensorless Drives," Energies, MDPI, vol. 13(24), pages 1-19, December.
    9. Chao Wu & Jun Yang & Qi Li, 2020. "GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System," Energies, MDPI, vol. 13(7), pages 1-21, April.
    10. Yubo Liu & Junlong Fang & Kezhu Tan & Boyan Huang & Wenshuai He, 2020. "Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM," Energies, MDPI, vol. 13(22), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryszard Palka, 2022. "The Performance of Induction Machines," Energies, MDPI, vol. 15(9), pages 1-4, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    2. Karol Kyslan & Viktor Petro & Peter Bober & Viktor Šlapák & František Ďurovský & Mateusz Dybkowski & Matúš Hric, 2022. "A Comparative Study and Optimization of Switching Functions for Sliding-Mode Observer in Sensorless Control of PMSM," Energies, MDPI, vol. 15(7), pages 1-17, April.
    3. Shuai Li & Ke Zhu & Liang Chen & Yao Yan & Qing Guo, 2022. "Variable Structure Disturbance Observer Based Dynamic Surface Control of Electrohydraulic Systems with Parametric Uncertainty," Energies, MDPI, vol. 15(5), pages 1-15, February.
    4. Jie Chen & Jiajun Wang & Bo Yan, 2022. "Simulation Research on Deadbeat Direct Torque and Flux Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-15, April.
    5. Omar Sandre Hernandez & Jorge S. Cervantes-Rojas & Jesus P. Ordaz Oliver & Carlos Cuvas Castillo, 2021. "Stator Fixed Deadbeat Predictive Torque and Flux Control of a PMSM Drive with Modulated Duty Cycle," Energies, MDPI, vol. 14(10), pages 1-15, May.
    6. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    7. Ji-Chang Son & Myung-Ki Baek & Sang-Hun Park & Dong-Kuk Lim, 2021. "Improved Immune Algorithm Combined with Steepest Descent Method for Optimal Design of IPMSM for FCEV Traction Motor," Energies, MDPI, vol. 14(13), pages 1-12, June.
    8. Grzegorz Sieklucki & Dawid Kara, 2022. "Design and Modelling of Energy Conversion with the Two-Region Torque Control of a PMSM in an EV Powertrain," Energies, MDPI, vol. 15(13), pages 1-18, July.
    9. Federico Barrero & Jorge Rodas, 2021. "Control of Power Electronics Converters and Electric Motor Drives," Energies, MDPI, vol. 14(15), pages 1-2, July.
    10. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    11. Chao Wu & Jun Yang & Qi Li, 2020. "GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System," Energies, MDPI, vol. 13(7), pages 1-21, April.
    12. Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
    13. Yang Cao & Jian Guo, 2022. "Sensorless Control of High-Speed Motors Subject to Iron Loss," Energies, MDPI, vol. 15(20), pages 1-14, October.
    14. Lorenzo Carbone & Simone Cosso & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2021. "State-Space Approach for SPMSM Sensorless Passive Algorithm Tuning," Energies, MDPI, vol. 14(21), pages 1-11, November.
    15. Zhaozhi Wang & Shemeng Wu & Kai-Hung Lu, 2022. "Improvement of Stability in an Oscillating Water Column Wave Energy Using an Adaptive Intelligent Controller," Energies, MDPI, vol. 16(1), pages 1-15, December.
    16. Shailendra Rajput & Eliyahu Farber & Moshe Averbukh, 2021. "Optimal Selection of Asynchronous Motor-Gearhead Couple Fed by VFD for Electrified Vehicle Propulsion," Energies, MDPI, vol. 14(14), pages 1-20, July.
    17. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    18. Xiaolei Cai & Qixuan Wang & Yucheng Wang & Li Zhang, 2023. "Research on a Variable-Leakage-Flux Permanent Magnet Motor Control System Based on an Adaptive Tracking Estimator," Energies, MDPI, vol. 16(2), pages 1-16, January.
    19. Chunlei Wang & Dongxing Cao & Xiangxu Qu & Chen Fan, 2022. "An Improved Finite Control Set Model Predictive Current Control for a Two-Phase Hybrid Stepper Motor Fed by a Three-Phase VSI," Energies, MDPI, vol. 15(3), pages 1-17, February.
    20. Claudiu-Ionel Nicola & Marcel Nicola, 2023. "Improved Performance for PMSM Sensorless Control Based on the LADRC Controller, ESO-Type Observer, DO-Type Observer, and RL-TD3 Agent," Mathematics, MDPI, vol. 11(15), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2049-:d:531871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.