IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5991-d446132.html
   My bibliography  Save this article

Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM

Author

Listed:
  • Yubo Liu

    (College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China)

  • Junlong Fang

    (College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China)

  • Kezhu Tan

    (College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China)

  • Boyan Huang

    (College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China)

  • Wenshuai He

    (College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China)

Abstract

To improve the observation accuracy and robustness of the sensorless control of an interior permanent magnet synchronous motor (IPMSM), a sliding mode observer based on the super twisting algorithm (STA-SMO) with adaptive parameters estimation control is proposed, as parameter mismatches are considered. First, the conventional sliding mode observer (CSMO) is analyzed. The conventional exponential approach law produces a large chattering phenomenon in the back EMF estimation, which causes a large observation error when filtering the chattering through the low-pass filter. Second, a high-order approach law of the super twisting algorithm is introduced to observe the rotor position and speed estimation, which uses the integral function to eliminate the chattering of the sliding mode. Third, an adaptive parameter estimation control (APEC) is presented to enhance the observation accuracy caused by parameter mismatches; the motor parameter adaptive law of the APEC is designed by Lyapunov’s stability law. Finally, the proposed method not only reduces both the chattering and the low-pass filter, but it also enhances accuracy and robustness against parameter mismatches, as discussed through simulations and experiments.

Suggested Citation

  • Yubo Liu & Junlong Fang & Kezhu Tan & Boyan Huang & Wenshuai He, 2020. "Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM," Energies, MDPI, vol. 13(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5991-:d:446132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng Liu & Guowei Cai & Jiwei Gao & Deyou Yang, 2017. "Design of Nonlinear Robust Damping Controller for Power Oscillations Suppressing Based on Backstepping-Fractional Order Sliding Mode," Energies, MDPI, vol. 10(5), pages 1-23, May.
    2. Mingcheng Lyu & Gongping Wu & Derong Luo & Fei Rong & Shoudao Huang, 2019. "Robust Nonlinear Predictive Current Control Techniques for PMSM," Energies, MDPI, vol. 12(3), pages 1-19, January.
    3. Gang Wang & Chenghui Zhou & Yu Yu & Xiaoping Liu, 2019. "Adaptive Sliding Mode Trajectory Tracking Control for WMR Considering Skidding and Slipping via Extended State Observer," Energies, MDPI, vol. 12(17), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolei Cai & Qixuan Wang & Yucheng Wang & Li Zhang, 2023. "Research on a Variable-Leakage-Flux Permanent Magnet Motor Control System Based on an Adaptive Tracking Estimator," Energies, MDPI, vol. 16(2), pages 1-16, January.
    2. Claudiu-Ionel Nicola & Marcel Nicola, 2023. "Improved Performance for PMSM Sensorless Control Based on the LADRC Controller, ESO-Type Observer, DO-Type Observer, and RL-TD3 Agent," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    3. Alessandro Benevieri & Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2022. "Surface Permanent Magnet Synchronous Motors’ Passive Sensorless Control: A Review," Energies, MDPI, vol. 15(20), pages 1-26, October.
    4. Karol Kyslan & Viktor Petro & Peter Bober & Viktor Šlapák & František Ďurovský & Mateusz Dybkowski & Matúš Hric, 2022. "A Comparative Study and Optimization of Switching Functions for Sliding-Mode Observer in Sensorless Control of PMSM," Energies, MDPI, vol. 15(7), pages 1-17, April.
    5. Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
    6. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    7. Weidong Feng & Jing Bai & Zhiqiang Zhang & Jing Zhang, 2022. "A Composite Variable Structure PI Controller for Sensorless Speed Control Systems of IPMSM," Energies, MDPI, vol. 15(21), pages 1-18, November.
    8. Shuai Li & Ke Zhu & Liang Chen & Yao Yan & Qing Guo, 2022. "Variable Structure Disturbance Observer Based Dynamic Surface Control of Electrohydraulic Systems with Parametric Uncertainty," Energies, MDPI, vol. 15(5), pages 1-15, February.
    9. Artun Sel & Bilgehan Sel & Umit Coskun & Cosku Kasnakoglu, 2022. "SOS-Based Nonlinear Observer Design for Simultaneous State and Disturbance Estimation Designed for a PMSM Model," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
    10. Yang Cao & Jian Guo, 2022. "Sensorless Control of High-Speed Motors Subject to Iron Loss," Energies, MDPI, vol. 15(20), pages 1-14, October.
    11. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    12. Paweł Latosiński & Andrzej Bartoszewicz, 2021. "Zero-Width Quasi-Sliding Mode Band in the Presence of Non-Matched Uncertainties," Energies, MDPI, vol. 14(11), pages 1-16, May.
    13. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    2. Fabiano C. Rosa & Edson Bim, 2020. "A Constrained Non-Linear Model Predictive Controller for the Rotor Flux-Oriented Control of an Induction Motor Drive," Energies, MDPI, vol. 13(15), pages 1-18, July.
    3. Wenjuan Zhang & Gongping Wu & Zhimeng Rao & Jian Zheng & Derong Luo, 2020. "Predictive Power Control of Novel N *3-phase PM Energy Storage Motor for Urban Rail Transit," Energies, MDPI, vol. 13(7), pages 1-17, April.
    4. Yung-Hsiang Chen & Yung-Yue Chen, 2022. "Trajectory Tracking Design for a Swarm of Autonomous Mobile Robots: A Nonlinear Adaptive Optimal Approach," Mathematics, MDPI, vol. 10(20), pages 1-21, October.
    5. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    6. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.
    7. Zehao Lyu & Xiang Wu & Jie Gao & Guojun Tan, 2021. "An Improved Finite-Control-Set Model Predictive Current Control for IPMSM under Model Parameter Mismatches," Energies, MDPI, vol. 14(19), pages 1-13, October.
    8. Xingbao Ju & Ping Zhao & Haishun Sun & Wei Yao & Jinyu Wen, 2017. "Nonlinear Synergetic Governor Controllers for Steam Turbine Generators to Enhance Power System Stability," Energies, MDPI, vol. 10(8), pages 1-16, July.
    9. Xiao Liang & Juntao Fei, 2019. "Adaptive fractional fuzzy sliding mode control of microgyroscope based on backstepping design," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    10. Wenjuan Zhang & Yu Li & Gongping Wu & Zhimeng Rao & Jian Gao & Derong Luo, 2021. "Robust Predictive Power Control of N *3-Phase PMSM for Flywheel Energy Storage Systems Application," Energies, MDPI, vol. 14(12), pages 1-17, June.
    11. Kai Zhou & Min Ai & Yancheng Sun & Xiaogang Wu & Ran Li, 2019. "PMSM Vector Control Strategy Based on Active Disturbance Rejection Controller," Energies, MDPI, vol. 12(20), pages 1-19, October.
    12. Haneen Ghanayem & Mohammad Alathamneh & R. M. Nelms, 2023. "Decoupled Speed and Flux Control of Three-Phase PMSM Based on the Proportional-Resonant Control Method," Energies, MDPI, vol. 16(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5991-:d:446132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.