IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p443-d202086.html
   My bibliography  Save this article

Robust Nonlinear Predictive Current Control Techniques for PMSM

Author

Listed:
  • Mingcheng Lyu

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Gongping Wu

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Derong Luo

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Fei Rong

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Shoudao Huang

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

Abstract

This paper proposes a robust nonlinear predictive current control (RNPCC) method for permanent magnet synchronous motor (PMSM) drives, which can optimize the current control loop performance of the PMSM system with model parameter perturbation. First, the disturbance caused by parameter perturbation was considered in the modeling of PMSM. Based on this model, the influence of parameter perturbation on the conventional predictive current control (PCC) was analyzed. The composite integral terminal sliding mode observer (SMO) was then designed to estimate the disturbance caused by the parameter perturbation in real time. Finally, a RNPCC method is developed without relying on the mathematical model of PMSM, which can effectively eliminate the influence of parameter perturbation by injecting the estimated disturbance value. Simulations and experiments verified that the proposed RNPCC method was able to remove the current error caused by the parameter perturbation during steady state operation.

Suggested Citation

  • Mingcheng Lyu & Gongping Wu & Derong Luo & Fei Rong & Shoudao Huang, 2019. "Robust Nonlinear Predictive Current Control Techniques for PMSM," Energies, MDPI, vol. 12(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:443-:d:202086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    2. Fang Hu & Derong Luo & Chengwei Luo & Zhuo Long & Gongping Wu, 2018. "Cascaded Robust Fault-Tolerant Predictive Control for PMSM Drives," Energies, MDPI, vol. 11(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haneen Ghanayem & Mohammad Alathamneh & R. M. Nelms, 2023. "Decoupled Speed and Flux Control of Three-Phase PMSM Based on the Proportional-Resonant Control Method," Energies, MDPI, vol. 16(3), pages 1-16, January.
    2. Wenjuan Zhang & Gongping Wu & Zhimeng Rao & Jian Zheng & Derong Luo, 2020. "Predictive Power Control of Novel N *3-phase PM Energy Storage Motor for Urban Rail Transit," Energies, MDPI, vol. 13(7), pages 1-17, April.
    3. Wenjuan Zhang & Yu Li & Gongping Wu & Zhimeng Rao & Jian Gao & Derong Luo, 2021. "Robust Predictive Power Control of N *3-Phase PMSM for Flywheel Energy Storage Systems Application," Energies, MDPI, vol. 14(12), pages 1-17, June.
    4. Fabiano C. Rosa & Edson Bim, 2020. "A Constrained Non-Linear Model Predictive Controller for the Rotor Flux-Oriented Control of an Induction Motor Drive," Energies, MDPI, vol. 13(15), pages 1-18, July.
    5. Zehao Lyu & Xiang Wu & Jie Gao & Guojun Tan, 2021. "An Improved Finite-Control-Set Model Predictive Current Control for IPMSM under Model Parameter Mismatches," Energies, MDPI, vol. 14(19), pages 1-13, October.
    6. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    7. Kai Zhou & Min Ai & Yancheng Sun & Xiaogang Wu & Ran Li, 2019. "PMSM Vector Control Strategy Based on Active Disturbance Rejection Controller," Energies, MDPI, vol. 12(20), pages 1-19, October.
    8. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    9. Yubo Liu & Junlong Fang & Kezhu Tan & Boyan Huang & Wenshuai He, 2020. "Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM," Energies, MDPI, vol. 13(22), pages 1-18, November.
    10. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    2. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    3. Michał Gwóźdź & Michał Krystkowiak & Łukasz Ciepliński & Ryszard Strzelecki, 2020. "A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux," Energies, MDPI, vol. 13(12), pages 1-18, June.
    4. Wenjuan Zhang & Gongping Wu & Zhimeng Rao & Jian Zheng & Derong Luo, 2020. "Predictive Power Control of Novel N *3-phase PM Energy Storage Motor for Urban Rail Transit," Energies, MDPI, vol. 13(7), pages 1-17, April.
    5. Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
    6. Zhimeng Rao & Wenjuan Zhang & Gongping Wu & Jian Zheng & Shoudao Huang, 2020. "Characteristic Analysis and Predictive Torque Control of the Modular Three-Phase PMSM for Low-Voltage High Power Application," Energies, MDPI, vol. 13(21), pages 1-20, October.
    7. Liang Yuan & Ke Meng & Jingjie Huang & Zhao Yang Dong & Wang Zhang & Xiaorong Xie, 2020. "Development of HVRT and LVRT Control Strategy for PMSG-Based Wind Turbine Generators," Energies, MDPI, vol. 13(20), pages 1-16, October.
    8. Lynn Verkroost & Joachim Druant & Hendrik Vansompel & Frederik De Belie & Peter Sergeant, 2019. "Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control," Energies, MDPI, vol. 12(5), pages 1-20, February.
    9. Wenjuan Zhang & Yu Li & Gongping Wu & Zhimeng Rao & Jian Gao & Derong Luo, 2021. "Robust Predictive Power Control of N *3-Phase PMSM for Flywheel Energy Storage Systems Application," Energies, MDPI, vol. 14(12), pages 1-17, June.
    10. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.
    11. Ernest F. Morgan & Omar Abdel-Rahim & Tamer F. Megahed & Junya Suehiro & Sobhy M. Abdelkader, 2022. "Fault Ride-Through Techniques for Permanent Magnet Synchronous Generator Wind Turbines (PMSG-WTGs): A Systematic Literature Review," Energies, MDPI, vol. 15(23), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:443-:d:202086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.