IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5442-d431135.html
   My bibliography  Save this article

Development of HVRT and LVRT Control Strategy for PMSG-Based Wind Turbine Generators

Author

Listed:
  • Liang Yuan

    (School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney 2052, Australia)

  • Ke Meng

    (School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney 2052, Australia)

  • Jingjie Huang

    (School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney 2052, Australia)

  • Zhao Yang Dong

    (School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney 2052, Australia)

  • Wang Zhang

    (School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney 2052, Australia)

  • Xiaorong Xie

    (State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Various challenges are acknowledged in practical cases with high wind power penetration. Fault ride-through (FRT) capability has become the most dominant grid integration requirements for the wind energy conversion system worldwide. The high voltage ride-through (HVRT) and low voltage ride-through (LVRT) performance play a vital role in the grid-friendly integration into the system. In this paper, a coordinated HVRT and LVRT control strategy is proposed to enhance the FRT capability of the permanent magnet synchronous generator (PMSG)-based wind turbine generators (WTG). A dual-mode chopper protection is developed to avoid DC-link overvoltage, and a deadband protection is proposed to prevent oscillations under edge voltage conditions. The proposed strategy can ride through different levels of voltage sags or swells and provide auxiliary dynamic reactive power support simultaneously. The performance of the proposed control scheme is validated through various comparison case tests in PSCAD/EMTDC.

Suggested Citation

  • Liang Yuan & Ke Meng & Jingjie Huang & Zhao Yang Dong & Wang Zhang & Xiaorong Xie, 2020. "Development of HVRT and LVRT Control Strategy for PMSG-Based Wind Turbine Generators," Energies, MDPI, vol. 13(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5442-:d:431135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    2. Amer Saeed, M. & Mehroz Khan, Hafiz & Ashraf, Arslan & Aftab Qureshi, Suhail, 2018. "Analyzing effectiveness of LVRT techniques for DFIG wind turbine system and implementation of hybrid combination with control schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2487-2501.
    3. Cheng Zhong & Lai Wei & Gangui Yan, 2017. "Low Voltage Ride-through Scheme of the PMSG Wind Power System Based on Coordinated Instantaneous Active Power Control," Energies, MDPI, vol. 10(7), pages 1-20, July.
    4. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangwu Yan & Linlin Yang & Tiecheng Li, 2021. "The LVRT Control Scheme for PMSG-Based Wind Turbine Generator Based on the Coordinated Control of Rotor Overspeed and Supercapacitor Energy Storage," Energies, MDPI, vol. 14(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byungki Kim & Yang-Hyun Nam & Kyung-Sang Ryu & Dae-Jin Kim, 2023. "Implementation Strategy of Test Facility Based on Auto-Transformer for LVRT/HVRT Evaluation of Large-Scale Wind Turbine," Energies, MDPI, vol. 16(10), pages 1-25, May.
    2. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    3. Michał Gwóźdź & Michał Krystkowiak & Łukasz Ciepliński & Ryszard Strzelecki, 2020. "A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux," Energies, MDPI, vol. 13(12), pages 1-18, June.
    4. Mingcheng Lyu & Gongping Wu & Derong Luo & Fei Rong & Shoudao Huang, 2019. "Robust Nonlinear Predictive Current Control Techniques for PMSM," Energies, MDPI, vol. 12(3), pages 1-19, January.
    5. Hwanik Lee & Moonsung Bae & Byongjun Lee, 2017. "Advanced Reactive Power Reserve Management Scheme to Enhance LVRT Capability," Energies, MDPI, vol. 10(10), pages 1-15, October.
    6. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    7. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.
    8. Taufik Taluo & Leposava Ristić & Milutin Jovanović, 2021. "Dynamic Modeling and Control of BDFRG under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(14), pages 1-22, July.
    9. Zbigniew Kłosowski & Sławomir Cieślik, 2020. "Real-Time Simulation of Power Conversion in Doubly Fed Induction Machine," Energies, MDPI, vol. 13(3), pages 1-22, February.
    10. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    11. Syed Wajahat Ali & Anant Kumar Verma & Yacine Terriche & Muhammad Sadiq & Chun-Lien Su & Chung-Hong Lee & Mahmoud Elsisi, 2022. "Finite-Control-Set Model Predictive Control for Low-Voltage-Ride-Through Enhancement of PMSG Based Wind Energy Grid Connection Systems," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    12. Chao Ai & Guangling Zhou & Yalun Wang & Wei Gao & Xiangdong Kong, 2019. "Active Power Control of Hydraulic Wind Turbines during Low Voltage Ride-Through (LVRT) Based on Hierarchical Control," Energies, MDPI, vol. 12(7), pages 1-22, March.
    13. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
    14. Jianfeng Dai & Yi Tang & Jun Yi, 2019. "Adaptive Gains Control Scheme for PMSG-Based Wind Power Plant to Provide Voltage Regulation Service," Energies, MDPI, vol. 12(4), pages 1-20, February.
    15. Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
    16. Ernest F. Morgan & Omar Abdel-Rahim & Tamer F. Megahed & Junya Suehiro & Sobhy M. Abdelkader, 2022. "Fault Ride-Through Techniques for Permanent Magnet Synchronous Generator Wind Turbines (PMSG-WTGs): A Systematic Literature Review," Energies, MDPI, vol. 15(23), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5442-:d:431135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.