IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p673-d316478.html
   My bibliography  Save this article

Real-Time Simulation of Power Conversion in Doubly Fed Induction Machine

Author

Listed:
  • Zbigniew Kłosowski

    (Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, Kaliskiego 7, PL-85-796 Bydgoszcz, Poland)

  • Sławomir Cieślik

    (Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, Kaliskiego 7, PL-85-796 Bydgoszcz, Poland)

Abstract

Currently used methods of simulation of doubly fed induction machines (DFIM), especially in real-time simulators (where a relatively large calculation step is used and high adequacy is required), do not provide the required adequacy, especially in rotor electrical circuits. In order to increase the adequacy of reproducing of electrical processes occurring in the circuits of the wound DFIM rotor, this paper presents a proposal and a verification of a new method of real-time simulation. The new method of mathematical modeling of electrical circuits uses voltage averaging at the calculation step. This method was supplemented by prediction of the machine’s rotor angle, which significantly increases the degree of adequacy of reproducing physical quantities present in DFIM, especially in the machine’s rotor. This method allows real-time simulation of electrical systems with a relatively large calculation step (of the order of 200 µs), while maintaining an appropriate degree of adequacy.

Suggested Citation

  • Zbigniew Kłosowski & Sławomir Cieślik, 2020. "Real-Time Simulation of Power Conversion in Doubly Fed Induction Machine," Energies, MDPI, vol. 13(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:673-:d:316478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    2. Edgar Lucas & David Campos-Gaona & Olimpo Anaya-Lara, 2019. "Assessing the Impact of DFIG Synthetic Inertia Provision on Power System Small-Signal Stability," Energies, MDPI, vol. 12(18), pages 1-15, September.
    3. Guodong You & Tao Xu & Honglin Su & Xiaoxin Hou & Xue Wang & Chengxin Fang & Jisheng Li, 2019. "Fault-Tolerant Control of Doubly-Fed Wind Turbine Generation Systems under Sensor Fault Conditions," Energies, MDPI, vol. 12(17), pages 1-14, August.
    4. Francisco Jiménez-Buendía & Raquel Villena-Ruiz & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," Energies, MDPI, vol. 12(19), pages 1-16, September.
    5. Ernande Eugenio C. Morais & Francisco Kleber de A. Lima & Jean M. L. Fonseca & Carlos G. C. Branco & Lívia de A. Machado, 2019. "Providing Ancillary Services with Wind Turbine Generators Based on DFIG with a Two-Branch Static Converter," Energies, MDPI, vol. 12(13), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yazmín Yorely Rivera-Lugo & Kevin Isaac Pérez-Muñoz & Balter Trujillo-Navarrete & Carolina Silva-Carrillo & Edgar Alonso Reynoso-Soto & Julio Cesar Calva Yañez & Shui Wai Lin & José Roberto Flores-Her, 2020. "PtPd Hybrid Composite Catalysts as Cathodes for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 13(2), pages 1-12, January.
    2. Byungki Kim & Yang-Hyun Nam & Kyung-Sang Ryu & Dae-Jin Kim, 2023. "Implementation Strategy of Test Facility Based on Auto-Transformer for LVRT/HVRT Evaluation of Large-Scale Wind Turbine," Energies, MDPI, vol. 16(10), pages 1-25, May.
    3. Liang Yuan & Ke Meng & Jingjie Huang & Zhao Yang Dong & Wang Zhang & Xiaorong Xie, 2020. "Development of HVRT and LVRT Control Strategy for PMSG-Based Wind Turbine Generators," Energies, MDPI, vol. 13(20), pages 1-16, October.
    4. Taufik Taluo & Leposava Ristić & Milutin Jovanović, 2021. "Dynamic Modeling and Control of BDFRG under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(14), pages 1-22, July.
    5. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    6. Hamed Habibi & Hamed Rahimi Nohooji & Ian Howard & Silvio Simani, 2019. "Fault-Tolerant Neuro Adaptive Constrained Control of Wind Turbines for Power Regulation with Uncertain Wind Speed Variation," Energies, MDPI, vol. 12(24), pages 1-33, December.
    7. Ram Machlev & Zohar Batushansky & Sachin Soni & Vladimir Chadliev & Juri Belikov & Yoash Levron, 2020. "Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks," Energies, MDPI, vol. 13(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:673-:d:316478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.