IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6685-d464165.html
   My bibliography  Save this article

Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies

Author

Listed:
  • Mojtaba Nasiri

    (Department of Electrical Engineering, Islamic Azad University, Abhar Branch, Abhar 4563934367, Iran)

  • Saleh Mobayen

    (Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan)

  • Behdad Faridpak

    (Electrical and Computer Engineering Faculty, University of Tabriz, Tabriz 5881743571, Iran)

  • Afef Fekih

    (Electrical and Computer Engineering Department, University of Louisiana at Lafayette, P.O. Box 43890, Lafayette, LA 70504, USA)

  • Arthur Chang

    (Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan)

Abstract

In recent years, due to the several advantages of permanent magnet synchronous generator (PMSG), the number of wind farms utilizing this technology has been significantly grown. The determination of the failure mechanism in these devices is the major challenge which has been addressed in many studies. Particularly, response to grid code compliance by wind power in the voltage drop situation needs to be comprehensively analyzed. In this paper, a small signal model of a PMSG-based wind turbine for low voltage ride-through (LVRT) and suitable for stability and artificial intelligent studies is presented. Accordingly, the generator side converter controls the dc-link voltage, and the maximum power point tracking is performed by the grid side converter. Given the proposed model, the speed of the simulation for stability analysis studies can be significantly increased by intelligent methods. Furthermore, the simplified approach can be achieved for calculating the optimal coefficients of the proportionality-integral controller by intelligent methods in a short time. By simulating the proposed small-signal model and comparing it with the block-based simulation in MATLAB/SIMULINK software, the appropriate accuracy and efficiency of the proposed model are confirmed.

Suggested Citation

  • Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6685-:d:464165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kosuke Takahashi & Nyam Jargalsaikhan & Shriram Rangarajan & Ashraf Mohamed Hemeida & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Output Control of Three-Axis PMSG Wind Turbine Considering Torsional Vibration Using H Infinity Control," Energies, MDPI, vol. 13(13), pages 1-13, July.
    2. Victor F. Mendes & Frederico F. Matos & Silas Y. Liu & Allan F. Cupertino & Heverton A. Pereira & Clodualdo V. De Sousa, 2016. "Low Voltage Ride-Through Capability Solutions for Permanent Magnet Synchronous Wind Generators," Energies, MDPI, vol. 9(1), pages 1-19, January.
    3. Yun-Su Kim & Il-Yop Chung & Seung-Il Moon, 2015. "Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds," Energies, MDPI, vol. 8(2), pages 1-20, February.
    4. Sung-Won Lee & Kwan-Ho Chun, 2019. "Adaptive Sliding Mode Control for PMSG Wind Turbine Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    5. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    6. Altan Gencer, 2019. "Analysis and Control of Fault Ride-Through Capability Improvement for Wind Turbine Based on a Permanent Magnet Synchronous Generator Using an Interval Type-2 Fuzzy Logic System," Energies, MDPI, vol. 12(12), pages 1-16, June.
    7. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    8. Florentino Chavira & S. Ortega-Cisneros & Jorge Rivera, 2017. "A Novel Sliding Mode Control Scheme for a PMSG-Based Variable Speed Wind Energy Conversion System," Energies, MDPI, vol. 10(10), pages 1-13, September.
    9. Mohamed Abdelrahem & Ralph Kennel, 2016. "Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    10. Cheng Zhong & Lai Wei & Gangui Yan, 2017. "Low Voltage Ride-through Scheme of the PMSG Wind Power System Based on Coordinated Instantaneous Active Power Control," Energies, MDPI, vol. 10(7), pages 1-20, July.
    11. Mojtaba Nasiri & Saleh Mobayen & Quan Min Zhu, 2019. "Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    12. Jun Deng & Jianbo Wang & Shupeng Li & Haijing Zhang & Shutao Peng & Tong Wang, 2020. "Adaptive Damping Design of PMSG Integrated Power System with Virtual Synchronous Generator Control," Energies, MDPI, vol. 13(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiyao Qin & Yuyang Chang & Zhen Xie & Shaolin Li, 2021. "Improved Virtual Inertia of PMSG-Based Wind Turbines Based on Multi-Objective Model-Predictive Control," Energies, MDPI, vol. 14(12), pages 1-20, June.
    2. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "A Particle Swarm Optimization Technique Tuned TID Controller for Frequency and Voltage Regulation with Penetration of Electric Vehicles and Distributed Generations," Energies, MDPI, vol. 15(21), pages 1-32, November.
    3. Ernest F. Morgan & Omar Abdel-Rahim & Tamer F. Megahed & Junya Suehiro & Sobhy M. Abdelkader, 2022. "Fault Ride-Through Techniques for Permanent Magnet Synchronous Generator Wind Turbines (PMSG-WTGs): A Systematic Literature Review," Energies, MDPI, vol. 15(23), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwu Yan & Linlin Yang & Tiecheng Li, 2021. "The LVRT Control Scheme for PMSG-Based Wind Turbine Generator Based on the Coordinated Control of Rotor Overspeed and Supercapacitor Energy Storage," Energies, MDPI, vol. 14(2), pages 1-22, January.
    2. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    3. Mohamed Abdelrahem & Ralph Kennel, 2016. "Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    4. Zholtayev, Darkhan & Rubagotti, Matteo & Do, Ton Duc, 2022. "Adaptive super-twisting sliding mode control for maximum power point tracking of PMSG-based wind energy conversion systems," Renewable Energy, Elsevier, vol. 183(C), pages 877-889.
    5. Ganesh Mayilsamy & Kumarasamy Palanimuthu & Raghul Venkateswaran & Ruban Periyanayagam Antonysamy & Seong Ryong Lee & Dongran Song & Young Hoon Joo, 2023. "A Review of State Estimation Techniques for Grid-Connected PMSG-Based Wind Turbine Systems," Energies, MDPI, vol. 16(2), pages 1-27, January.
    6. Mojtaba Nasiri & Saleh Mobayen & Quan Min Zhu, 2019. "Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    7. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    8. Shijia Zhou & Fei Rong & Zhangtao Yin & Shoudao Huang & Yuebin Zhou, 2018. "HVDC Transmission Technology of Wind Power System with Multi-Phase PMSG," Energies, MDPI, vol. 11(12), pages 1-16, November.
    9. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.
    10. Janusz Baran & Andrzej Jąderko, 2020. "An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation," Energies, MDPI, vol. 13(23), pages 1-20, December.
    11. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    12. Vincenzo Iannino & Valentina Colla & Mario Innocenti & Annamaria Signorini, 2017. "Design of a H ∞ Robust Controller with μ -Analysis for Steam Turbine Power Generation Applications," Energies, MDPI, vol. 10(7), pages 1-31, July.
    13. Shoudao Huang & Yang Zhang & Zhikang Shuai, 2016. "Capacitor Voltage Ripple Suppression for Z-Source Wind Energy Conversion System," Energies, MDPI, vol. 9(1), pages 1-15, January.
    14. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    15. Youjie Ma & Long Tao & Xuesong Zhou & Wei Li & Xueqi Shi, 2019. "Analysis and Control of Wind Power Grid Integration Based on a Permanent Magnet Synchronous Generator Using a Fuzzy Logic System with Linear Extended State Observer," Energies, MDPI, vol. 12(15), pages 1-19, July.
    16. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    17. Borzou Yousefi & Soodabeh Soleymani & Babak Mozafari & Seid Asghar Gholamian, 2017. "Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages," Energies, MDPI, vol. 10(10), pages 1-21, September.
    18. Pan, Lin & Wang, Xudong, 2020. "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, Elsevier, vol. 159(C), pages 221-237.
    19. Shiref A. Abdalla & Shahrum S. Abdullah, 2019. "Performance Improvements of Induction Motor Drive Supplied by Hybrid Wind and Storage Generation System Based on Mine Blast Algorithm," Energies, MDPI, vol. 12(15), pages 1-17, July.
    20. Zhishuai Hu & Yongfeng Ren & Qingtian Meng & Pingping Yun & Chenzhi Fang & Yu Pan, 2023. "Improvement of Frequency Support for a DFIG Using a Virtual Synchronous Generator Strategy at Large Power Angles," Energies, MDPI, vol. 16(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6685-:d:464165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.