IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1540-d114134.html
   My bibliography  Save this article

Advanced Reactive Power Reserve Management Scheme to Enhance LVRT Capability

Author

Listed:
  • Hwanik Lee

    (School of Electrical Engineering, Korea University, Anam Campus, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Moonsung Bae

    (Korea Electric Power Research Institute (KEPRI), Korea Electric Power Corporation (KEPCO), 105 Munji-Ro, Yuseong-Gu, Deajeon 305-760, Korea)

  • Byongjun Lee

    (School of Electrical Engineering, Korea University, Anam Campus, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

Abstract

: To increase the utilization of wind power in the power system, grid integration standards have been proposed for the stable integration of large-scale wind power plants. In particular, fault-ride-through capability, especially Low-Voltage-Ride-Through (LVRT), has been emphasized, as it is related to tripping in wind farms. Therefore, this paper proposes the Wind power plant applicable-Effective Reactive power Reserve (Wa-ERPR), which combines both wind power plants and conventional generators at the Point of Interconnection (POI). The reactive power capability of the doubly-fed induction generator wind farm was considered to compute the total Wa-ERPR at the POI with reactive power capability of existing generators. By using the Wa-ERPR management algorithm, in case of a violation of the LVRT standards, the amount of reactive power compensation is computed using the Wa-ERPR management scheme. The proposed scheme calculates the Wa-ERPR and computes the required reactive power, reflecting the change of the system topology pre- and post-contingency, to satisfy the LVRT criterion when LVRT regulation is not satisfied at the POI. The static synchronous compensator (STATCOM) with the capacity corresponding to calculated amount of reactive power through the Wa-ERPR management scheme is applied to the POI. Therefore, it is confirmed that the wind power plant satisfies the LVRT criteria by securing the appropriate reactive power at the POI, by applying of the proposed algorithm.

Suggested Citation

  • Hwanik Lee & Moonsung Bae & Byongjun Lee, 2017. "Advanced Reactive Power Reserve Management Scheme to Enhance LVRT Capability," Energies, MDPI, vol. 10(10), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1540-:d:114134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yangwu Shen & Mingjian Cui & Qin Wang & Feifan Shen & Bin Zhang & Liqing Liang, 2017. "Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags," Energies, MDPI, vol. 10(6), pages 1-20, June.
    2. Zhong Zheng & Geng Yang & Hua Geng, 2013. "Coordinated Control of a Doubly-Fed Induction Generator-Based Wind Farm and a Static Synchronous Compensator for Low Voltage Ride-through Grid Code Compliance during Asymmetrical Grid Faults," Energies, MDPI, vol. 6(9), pages 1-22, September.
    3. Cheng Zhong & Lai Wei & Gangui Yan, 2017. "Low Voltage Ride-through Scheme of the PMSG Wind Power System Based on Coordinated Instantaneous Active Power Control," Energies, MDPI, vol. 10(7), pages 1-20, July.
    4. Minh Quan Duong & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Kim Hung Le, 2015. "Improving Transient Stability in a Grid-Connected Squirrel-Cage Induction Generator Wind Turbine System Using a Fuzzy Logic Controller," Energies, MDPI, vol. 8(7), pages 1-22, June.
    5. D. Flynn & Z. Rather & A. Ardal & S. D'Arco & A.D. Hansen & N.A. Cutululis & P. Sorensen & A. Estanquiero & E. Gómez & N. Menemenlis & C. Smith & Ye Wang, 2017. "Technical impacts of high penetration levels of wind power on power system stability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(2), March.
    6. Moonsung Bae & Hwanik Lee & Byongjun Lee, 2017. "An Approach to Improve the Penetration of Sustainable Energy Using Optimal Transformer Tap Control," Sustainability, MDPI, vol. 9(9), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seungchan Oh & Heewon Shin & Hwanhee Cho & Byongjun Lee, 2018. "Transient Impact Analysis of High Renewable Energy Sources Penetration According to the Future Korean Power Grid Scenario," Sustainability, MDPI, vol. 10(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Luo & Jianguo Jiang & He Liu, 2017. "Frequency-Adaptive Modified Comb-Filter-Based Phase-Locked Loop for a Doubly-Fed Adjustable-Speed Pumped-Storage Hydropower Plant under Distorted Grid Conditions," Energies, MDPI, vol. 10(6), pages 1-13, May.
    2. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    3. Amirhossein Sajadi & Luka Strezoski & Vladimir Strezoski & Marija Prica & Kenneth A. Loparo, 2019. "Integration of renewable energy systems and challenges for dynamics, control, and automation of electrical power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    4. Jin Liu & Wenxiang Zhao & Jinghua Ji & Guohai Liu & Tao Tao, 2016. "A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss," Energies, MDPI, vol. 9(11), pages 1-15, November.
    5. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    6. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Byungki Kim & Yang-Hyun Nam & Kyung-Sang Ryu & Dae-Jin Kim, 2023. "Implementation Strategy of Test Facility Based on Auto-Transformer for LVRT/HVRT Evaluation of Large-Scale Wind Turbine," Energies, MDPI, vol. 16(10), pages 1-25, May.
    8. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    9. Yangwu Shen & Feifan Shen & Yaling Chen & Liqing Liang & Bin Zhang & Deping Ke, 2018. "Reactive Power Planning for Regional Power Grids Based on Active and Reactive Power Adjustments of DGs," Energies, MDPI, vol. 11(6), pages 1-17, June.
    10. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    11. Robert Pietracho & Christoph Wenge & Stephan Balischewski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk & Damian Burzyński, 2021. "Potential of Using Medium Electric Vehicle Fleet in a Commercial Enterprise Transport in Germany on the Basis of Real-World GPS Data," Energies, MDPI, vol. 14(17), pages 1-23, August.
    12. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    13. Liang Yuan & Ke Meng & Jingjie Huang & Zhao Yang Dong & Wang Zhang & Xiaorong Xie, 2020. "Development of HVRT and LVRT Control Strategy for PMSG-Based Wind Turbine Generators," Energies, MDPI, vol. 13(20), pages 1-16, October.
    14. Bingtuan Gao & Chaopeng Xia & Ning Chen & Khalid Mehmood Cheema & Libin Yang & Chunlai Li, 2017. "Virtual Synchronous Generator Based Auxiliary Damping Control Design for the Power System with Renewable Generation," Energies, MDPI, vol. 10(8), pages 1-21, August.
    15. Jannik Schütz Roungkvist & Peter Enevoldsen, 2020. "Timescale classification in wind forecasting: A review of the state‐of‐the‐art," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 757-768, August.
    16. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    17. Tania García-Sánchez & Irene Muñoz-Benavente & Emilio Gómez-Lázaro & Ana Fernández-Guillamón, 2020. "Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips," Energies, MDPI, vol. 13(16), pages 1-19, August.
    18. Sharma, Akanksha & Jain, Sanjay K., 2021. "Day-ahead optimal reactive power ancillary service procurement under dynamic multi-objective framework in wind integrated deregulated power system," Energy, Elsevier, vol. 223(C).
    19. Howlader, Abdul Motin & Senjyu, Tomonobu, 2016. "A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 643-658.
    20. Sumei Liu & Tianshu Bi & Yanlin Liu, 2017. "Theoretical Analysis on the Short-Circuit Current of Inverter-Interfaced Renewable Energy Generators with Fault-Ride-Through Capability," Sustainability, MDPI, vol. 10(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1540-:d:114134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.