IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4140-d181989.html
   My bibliography  Save this article

Transient Impact Analysis of High Renewable Energy Sources Penetration According to the Future Korean Power Grid Scenario

Author

Listed:
  • Seungchan Oh

    (School of Electrical Engineering, Korea University, Anam Campus, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Heewon Shin

    (School of Electrical Engineering, Korea University, Anam Campus, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Hwanhee Cho

    (School of Electrical Engineering, Korea University, Anam Campus, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Byongjun Lee

    (School of Electrical Engineering, Korea University, Anam Campus, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

Abstract

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.

Suggested Citation

  • Seungchan Oh & Heewon Shin & Hwanhee Cho & Byongjun Lee, 2018. "Transient Impact Analysis of High Renewable Energy Sources Penetration According to the Future Korean Power Grid Scenario," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4140-:d:181989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diane Palmer & Elena Koubli & Tom Betts & Ralph Gottschalg, 2017. "The UK Solar Farm Fleet: A Challenge for the National Grid? †," Energies, MDPI, vol. 10(8), pages 1-22, August.
    2. Caroline De Oliveira Costa Souza Rosa & Kelly Alonso Costa & Eliane Da Silva Christo & Pâmela Braga Bertahone, 2017. "Complementarity of Hydro, Photovoltaic, and Wind Power in Rio de Janeiro State," Sustainability, MDPI, vol. 9(7), pages 1-12, June.
    3. Hwanik Lee & Moonsung Bae & Byongjun Lee, 2017. "Advanced Reactive Power Reserve Management Scheme to Enhance LVRT Capability," Energies, MDPI, vol. 10(10), pages 1-15, October.
    4. Moonsung Bae & Hwanik Lee & Byongjun Lee, 2017. "An Approach to Improve the Penetration of Sustainable Energy Using Optimal Transformer Tap Control," Sustainability, MDPI, vol. 9(9), pages 1-15, August.
    5. Jinchao Li & Xian Geng & Jinying Li, 2016. "A Comparison of Electricity Generation System Sustainability among G20 Countries," Sustainability, MDPI, vol. 8(12), pages 1-11, December.
    6. Zhongyi Liu & Chongru Liu & Gengyin Li & Yong Liu & Yilu Liu, 2015. "Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory," Energies, MDPI, vol. 8(12), pages 1-23, November.
    7. Rodríguez, Rolando A. & Becker, Sarah & Andresen, Gorm B. & Heide, Dominik & Greiner, Martin, 2014. "Transmission needs across a fully renewable European power system," Renewable Energy, Elsevier, vol. 63(C), pages 467-476.
    8. Jung Youn Mo & Wooyoung Jeon, 2017. "How Does Energy Storage Increase the Efficiency of an Electricity Market with Integrated Wind and Solar Power Generation?—A Case Study of Korea," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changhee Han & Sungyoon Song & Juyong Kim & Gilsoo Jang, 2019. "Enhancing Line Capacity Utilization in Power Transmission System Using Active MVDC Link," Energies, MDPI, vol. 12(9), pages 1-23, April.
    2. Izzuddin Fathin Azhar & Lesnanto Multa Putranto & Roni Irnawan, 2022. "Development of PMU-Based Transient Stability Detection Methods Using CNN-LSTM Considering Time Series Data Measurement," Energies, MDPI, vol. 15(21), pages 1-20, November.
    3. Milan Belik & Olena Rubanenko, 2023. "Implementation of Digital Twin for Increasing Efficiency of Renewable Energy Sources," Energies, MDPI, vol. 16(12), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    2. M. Hasanuzzaman & Ummu Salamah Zubir & Nur Iqtiyani Ilham & Hang Seng Che, 2017. "Global electricity demand, generation, grid system, and renewable energy polices: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    3. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    4. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    5. Rémi Delage & Taichi Matsuoka & Toshihiko Nakata, 2021. "Spatial–Temporal Estimation and Analysis of Japan Onshore and Offshore Wind Energy Potential," Energies, MDPI, vol. 14(8), pages 1-12, April.
    6. Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
    7. Jhonathan Fernandes Torres Souza & Sergio Almeida Pacca, 2019. "How far can low-carbon energy scenarios reach based on proven technologies?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 687-705, June.
    8. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
    9. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    10. Jadidoleslam, Morteza & Ebrahimi, Akbar & Latify, Mohammad Amin, 2017. "Probabilistic transmission expansion planning to maximize the integration of wind power," Renewable Energy, Elsevier, vol. 114(PB), pages 866-878.
    11. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    12. Grzegorz Dec & Grzegorz Drałus & Damian Mazur & Bogdan Kwiatkowski, 2021. "Forecasting Models of Daily Energy Generation by PV Panels Using Fuzzy Logic," Energies, MDPI, vol. 14(6), pages 1-16, March.
    13. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    14. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    15. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    16. Chia-Nan Wang & Min-Tsong Chou & Hsien-Pin Hsu & Jing-Wein Wang & Sridhar Selvaraj, 2017. "The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation," Energies, MDPI, vol. 10(2), pages 1-13, February.
    17. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    18. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    19. Frank Pierie & Christian E. J. van Someren & Sandór N. M. Kruse & Gideon A. H. Laugs & René M. J. Benders & Henri C. Moll, 2021. "Local Balancing of the Electricity Grid in a Renewable Municipality; Analyzing the Effectiveness and Cost of Decentralized Load Balancing Looking at Multiple Combinations of Technologies," Energies, MDPI, vol. 14(16), pages 1-35, August.
    20. Weiss, Olga & Bogdanov, Dmitry & Salovaara, Kaisa & Honkapuro, Samuli, 2017. "Market designs for a 100% renewable energy system: Case isolated power system of Israel," Energy, Elsevier, vol. 119(C), pages 266-277.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4140-:d:181989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.