IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp443-458.html
   My bibliography  Save this article

Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

Author

Listed:
  • Becker, Sarah
  • Frew, Bethany A.
  • Andresen, Gorm B.
  • Zeyer, Timo
  • Schramm, Stefan
  • Greiner, Martin
  • Jacobson, Mark Z.

Abstract

A future energy system is likely to rely heavily on wind and solar PV. To quantify general features of such a weather dependent electricity supply in the contiguous US, wind and solar PV generation data are calculated, based on 32 years of weather data with temporal resolution of 1h and spatial resolution of 40×40km2, assuming site-suitability-based and stochastic wind and solar capacity distributions. The regional wind-and-solar mixes matching load and generation closest on seasonal timescales cluster around 80% solar share, owing to the US summer load peak. This mix more than halves long-term storage requirements, compared to wind only. The mixes matching generation and load best on daily timescales lie at about 80% wind share, due to the nightly gap in solar production. Going from solar only to this mix reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to differing weather conditions. Regional LCOE vary by up to 29%, and LCOE-optimal mixes largely follow resource quality. A transmission network enhancement among FERC regions is constructed to transfer high penetrations of solar and wind across FERC boundaries, employing a novel least-cost optimization.

Suggested Citation

  • Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:443-458
    DOI: 10.1016/j.energy.2014.05.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    2. Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
    3. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    4. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    5. Rasmussen, Morten Grud & Andresen, Gorm Bruun & Greiner, Martin, 2012. "Storage and balancing synergies in a fully or highly renewable pan-European power system," Energy Policy, Elsevier, vol. 51(C), pages 642-651.
    6. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    7. Hart, Elaine K. & Jacobson, Mark Z., 2011. "A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables," Renewable Energy, Elsevier, vol. 36(8), pages 2278-2286.
    8. Corcoran, Bethany A. & Jenkins, Nick & Jacobson, Mark Z., 2012. "Effects of aggregating electric load in the United States," Energy Policy, Elsevier, vol. 46(C), pages 399-416.
    9. Rodríguez, Rolando A. & Becker, Sarah & Andresen, Gorm B. & Heide, Dominik & Greiner, Martin, 2014. "Transmission needs across a fully renewable European power system," Renewable Energy, Elsevier, vol. 63(C), pages 467-476.
    10. Nelson, James & Johnston, Josiah & Mileva, Ana & Fripp, Matthias & Hoffman, Ian & Petros-Good, Autumn & Blanco, Christian & Kammen, Daniel M., 2012. "High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures," Energy Policy, Elsevier, vol. 43(C), pages 436-447.
    11. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    12. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    13. Becker, S. & Rodriguez, R.A. & Andresen, G.B. & Schramm, S. & Greiner, M., 2014. "Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply," Energy, Elsevier, vol. 64(C), pages 404-418.
    14. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    15. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    2. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    3. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    4. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    5. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    6. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    7. Andresen, Gorm B. & Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2014. "The potential for arbitrage of wind and solar surplus power in Denmark," Energy, Elsevier, vol. 76(C), pages 49-58.
    8. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Jacobson, Mark Z. & Schramm, Stefan & Greiner, Martin, 2015. "Renewable build-up pathways for the US: Generation costs are not system costs," Energy, Elsevier, vol. 81(C), pages 437-445.
    9. Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
    10. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    11. Rodríguez, Rolando A. & Becker, Sarah & Andresen, Gorm B. & Heide, Dominik & Greiner, Martin, 2014. "Transmission needs across a fully renewable European power system," Renewable Energy, Elsevier, vol. 63(C), pages 467-476.
    12. Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
    13. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    14. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    15. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    16. Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
    17. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    18. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    19. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    20. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:443-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.