IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220307787.html
   My bibliography  Save this article

A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation

Author

Listed:
  • Al kez, Dlzar
  • Foley, Aoife M.
  • McIlwaine, Neil
  • Morrow, D. John
  • Hayes, Barry P.
  • Zehir, M. Alparslan
  • Mehigan, Laura
  • Papari, Behnaz
  • Edrington, Chris S.
  • Baran, Mesut

Abstract

Existing power systems are facing new challenges in maintaining the security of the power system as the penetration of variable renewable energy technologies, such as variable speed wind turbines, increase. System non-synchronous generation replaces conventional generators as penetration of renewable generation increases. This affects system rotational inertia and limits the number of online thermal generators that can provide frequency stability services and system-wide areas voltage stability. This evolution has resulted in some changes to existing grid codes and new ancillary services. Furthermore, it could provide opportunities to address the security of the system utilizing modern smart technologies, e.g. smart loads, heat pumps and electric vehicles. The aim of this paper is to evaluate the impacts of large-scale renewable power generation on power system dynamics from the perspective of the power system operator. It focuses on the grid codes implications and challenges specifically. Synthetic inertia response opportunities from smart loads, electric vehicles and energy storage technologies and dispatching wind farms during frequency excursions are analyzed and thoroughly discussed. The key finding is that rethinking in the development of grid code requirements and market mechanisms are needed if a power system based on 100% power electronic renewable generation is to be achieved. This type of power system would need a range of technologies to provide the types of ancillary (i.e. system) services required, as none of the technologies alone can tackle all the challenges presented.

Suggested Citation

  • Al kez, Dlzar & Foley, Aoife M. & McIlwaine, Neil & Morrow, D. John & Hayes, Barry P. & Zehir, M. Alparslan & Mehigan, Laura & Papari, Behnaz & Edrington, Chris S. & Baran, Mesut, 2020. "A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220307787
    DOI: 10.1016/j.energy.2020.117671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    2. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    3. Martin Almenta, M. & Morrow, D.J. & Best, R.J. & Fox, B. & Foley, A.M., 2016. "Domestic fridge-freezer load aggregation to support ancillary services," Renewable Energy, Elsevier, vol. 87(P2), pages 954-964.
    4. Fitzgerald, Niall & Foley, Aoife M. & McKeogh, Eamon, 2012. "Integrating wind power using intelligent electric water heating," Energy, Elsevier, vol. 48(1), pages 135-143.
    5. Lasantha Meegahapola & Manoj Datta & Inam Nutkani & James Conroy, 2018. "Role of fault ride‐through strategies for power grids with 100% power electronic‐interfaced distributed renewable energy resources," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    6. Gou, Xing & Chen, Qun & Hu, Kang & Ma, Huan & Chen, Lei & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2018. "Optimal planning of capacities and distribution of electric heater and heat storage for reduction of wind power curtailment in power systems," Energy, Elsevier, vol. 160(C), pages 763-773.
    7. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    8. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    9. Muhssin, Mazin T. & Cipcigan, Liana M. & Sami, Saif Sabah & Obaid, Zeyad Assi, 2018. "Potential of demand side response aggregation for the stabilization of the grids frequency," Applied Energy, Elsevier, vol. 220(C), pages 643-656.
    10. Malik, Anam & Ravishankar, Jayashri, 2018. "A hybrid control approach for regulating frequency through demand response," Applied Energy, Elsevier, vol. 210(C), pages 1347-1362.
    11. Higgins, P. & Foley, A.M. & Douglas, R. & Li, K., 2014. "Impact of offshore wind power forecast error in a carbon constraint electricity market," Energy, Elsevier, vol. 76(C), pages 187-197.
    12. Yan, Ruifeng & Saha, Tapan Kumar & Modi, Nilesh & Masood, Nahid-Al & Mosadeghy, Mehdi, 2015. "The combined effects of high penetration of wind and PV on power system frequency response," Applied Energy, Elsevier, vol. 145(C), pages 320-330.
    13. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2017. "Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 757-768.
    14. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    15. D. Flynn & Z. Rather & A. Ardal & S. D'Arco & A.D. Hansen & N.A. Cutululis & P. Sorensen & A. Estanquiero & E. Gómez & N. Menemenlis & C. Smith & Ye Wang, 2017. "Technical impacts of high penetration levels of wind power on power system stability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(2), March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    2. Khasanzoda, Nasrullo & Safaraliev, Murodbek & Zicmane, Inga & Beryozkina, Svetlana & Rahimov, Jamshed & Ahyoev, Javod, 2022. "Use of smart grid based wind resources in isolated power systems," Energy, Elsevier, vol. 253(C).
    3. Pasquale Marcello Falcone, 2023. "Sustainable Energy Policies in Developing Countries: A Review of Challenges and Opportunities," Energies, MDPI, vol. 16(18), pages 1-19, September.
    4. Sinhara M. H. D. Perera & Ghanim Putrus & Michael Conlon & Mahinsasa Narayana & Keith Sunderland, 2022. "Wind Energy Harvesting and Conversion Systems: A Technical Review," Energies, MDPI, vol. 15(24), pages 1-34, December.
    5. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    6. Hampton, Harrison & Foley, Aoife M. & Del Rio, Dylan Furszyfer & Sovacool, Benjamin, 2022. "Developing future retail electricity markets with a customer-centric focus," Energy Policy, Elsevier, vol. 168(C).
    7. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    8. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    9. Jesus Castro Martinez & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez Amenedo, 2021. "Contribution of Wind Farms to the Stability of Power Systems with High Penetration of Renewables," Energies, MDPI, vol. 14(8), pages 1-21, April.
    10. Kim, Gyeongmin & Hur, Jin, 2021. "Probabilistic modeling of wind energy potential for power grid expansion planning," Energy, Elsevier, vol. 230(C).
    11. Aya M. Moheb & Enas A. El-Hay & Attia A. El-Fergany, 2022. "Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids," Energies, MDPI, vol. 15(18), pages 1-30, September.
    12. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    13. Acaroğlu, Hakan & García Márquez, Fausto Pedro, 2022. "High voltage direct current systems through submarine cables for offshore wind farms: A life-cycle cost analysis with voltage source converters for bulk power transmission," Energy, Elsevier, vol. 249(C).
    14. Bahloul, Mohamed & Daoud, Mohamed & Khadem, Shafiuzzaman K., 2022. "A bottom-up approach for techno-economic analysis of battery energy storage system for Irish grid DS3 service provision," Energy, Elsevier, vol. 245(C).
    15. Boyle, James & Littler, Timothy & Foley, Aoife, 2020. "Battery energy storage system state-of-charge management to ensure availability of frequency regulating services from wind farms," Renewable Energy, Elsevier, vol. 160(C), pages 1119-1135.
    16. Li, Qingshan & Wang, Chenfang & Wang, Chunmei & Zhou, Taotao & Zhang, Xianwen & Zhang, Yangjun & Zhuge, Weilin & Sun, Li, 2023. "Comparison of organic coolants for boiling cooling of proton exchange membrane fuel cell," Energy, Elsevier, vol. 266(C).
    17. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Stanek, Wojciech, 2022. "Thermo-Ecological Cost (TEC) –comparison of energy-ecological efficiency of renewable and non-renewable energy technologies," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    5. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    6. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    7. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    8. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    9. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    10. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    11. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
    12. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    13. Hvelplund, Frede & Djørup, Søren, 2019. "Consumer ownership, natural monopolies and transition to 100% renewable energy systems," Energy, Elsevier, vol. 181(C), pages 440-449.
    14. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    15. Limpens, Gauthier & Jeanmart, Hervé, 2018. "Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium," Energy, Elsevier, vol. 152(C), pages 960-973.
    16. Wyman-Pain, Heather & Bian, Yuankai & Thomas, Cain & Li, Furong, 2018. "The economics of different generation technologies for frequency response provision," Applied Energy, Elsevier, vol. 222(C), pages 554-563.
    17. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    18. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
    19. Sannamari Pilpola & Vahid Arabzadeh & Jani Mikkola & Peter D. Lund, 2019. "Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland," Energies, MDPI, vol. 12(5), pages 1-22, March.
    20. Jacobson, Mark Z., 2021. "The cost of grid stability with 100 % clean, renewable energy for all purposes when countries are isolated versus interconnected," Renewable Energy, Elsevier, vol. 179(C), pages 1065-1075.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220307787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.